Question

An air bubble of radius 7.0 cm is released from the mouth of a diver. At...

An air bubble of radius 7.0 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.30 atm . (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the surface, the air inside the bubble does 28.27 J of work. The bubble rises so quickly to the surface that this process can be treated as being adiabatic. If the bubble's temperature is initially the same as the diver's body (37∘C), what is its temperature when it reaches the surface?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The equation for adiabatic process is given by

Pl-T Constant PV = Constant,

In this problem, P1 = 1.35 atm, P2 = 1 atm, T1 = 37 oC = 310 K, T2 = ?, The γ = 1.4 for air, which is predominantly a diatomic gas. Therefore, from the above equation you can write

PTPT

-1.4 . T2 Ti Р. = 284.5 K 11.5 °C = 310 x (1.35)

Add a comment
Know the answer?
Add Answer to:
An air bubble of radius 7.0 cm is released from the mouth of a diver. At...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An air bubble of radius 3.5 cm is released from the mouth of a diver. At...

    An air bubble of radius 3.5 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.30 atm . (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the surface, the air inside the bubble does 3.534 J of work. The bubble rises so quickly to the surface that this process can be treated as being adiabatic. If the bubble's temperature is initially the same as the...

  • An air bubble of radius 4.5 cm is released from the mouth of a diver.

     An air bubble of radius 4.5 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.30 atm . (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the surface, the air inside the bubble does 7.512 J of work. The bubble rises so quickly to the surface that this process can be treated as being adiabatic. Part A If the bubble's temperature is initially the same as the...

  • An air bubble of radius 6.5 cm is released from the mouth of a diver. At...

    An air bubble of radius 6.5 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.35 atm. (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the surface, the air inside the bubble does 26.69 J of work. The bubble rises so quickly to the surface that this process can be treated as being adiabatic. If the bubble's temperature is initially the same as the diver's...

  • An air bubble of radius 4.0 cm is released from the mouth of a diver. At...

    An air bubble of radius 4.0 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.25 atm . (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the surface, the air inside the bubble does 4.348 J  of work. The bubble rises so quickly to the surface that this process can be treated as being adiabatic. If the bubble's temperature is initially the same as the diver's...

  • ​ An air bubble of radius 5.5 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.20 atm .

    attached is the incorrect answer. Please answer with the correct solution and in Celsius An air bubble of radius 5.5 cm is released from the mouth of a diver. At the diver's depth the pressure is 1.20 atm . (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the surface, the air inside the bubble does 8.938 J of work. The bubble rises so quickly to the surface that this process can be treated...

  • practice problem 12.30 An air bubble of radius 5.5 cm is released from the mouth of...

    practice problem 12.30 An air bubble of radius 5.5 cm is released from the mouth of a diver. At the diver'ss depth the pressure is 1.35 atm. (We'll learn in chapter 13 why the diver's depth affects the pressure.) As it rises to the of surface, the air inside the bubble does 16.17 J work. The bubble rises so quickly to the surface that this process can be treated as being adiabatic. Part A If the bubble's temperature is initially...

  • 2) A 50.0 mL bubble is released from a diver's air tank at a pressure of...

    2) A 50.0 mL bubble is released from a diver's air tank at a pressure of 3.00 atm and a temperature of 9°C. What is the volume, in milliliters, of the bubble when it reaches the ocean surface, where the pressure is 1.00 atm and the temperature is 25°C? (Assume the amount of gas in the bubble does not change.)

  • A 1.6cm3 air bubble is released from the sandy bottom of a warm, shallow sea, where...

    A 1.6cm3 air bubble is released from the sandy bottom of a warm, shallow sea, where the gauge pressure is 2.0 atm . The bubble rises slowly enough that the air inside remains at the same constant temperature as the water. What is the volume of the bubble as it reaches the surface?

  • A.1.5 cm2 air bubble is released from the sandy bottom of a warm

    A.1.5 cm2 air bubble is released from the sandy bottom of a warm, shallow sea, where the gauge pressure is 1.2 atm. The bubble rises slowly enough that the air inside remains at the same constant temperature as the water. You may want to review (Pages 367-372) Part AWhat is the volume of the bubble as it reaches the surface?Prat BAs the bubble rises, is heat energy transferred from the water to the bubble or from the bubble to the water?

  • A scuba diver creates a spherical bubble with a radius of 2.0 cm at a depth...

    A scuba diver creates a spherical bubble with a radius of 2.0 cm at a depth of 30.0 m where the total pressure (including atmospheric pressure) is 4.00 atm. What is the radius of the bubble when it reaches the surface of the water? (Assume atmospheric pressure to be 1.00 atm and the temperature to be 298 K.)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT