Question

5. Consider the system illustrated in the figure. The pulley with radius R and moment of inertia I around its fixed axis is mounted on a frictionless axle which is fixed to the table. Th has one end fixed to the table, and the other end is attached to a massless inextensible rope. Th and a mass m hangs at its other end. Initially, the system is at rest e spring with stiffness constant k e rope passes over the pulley (a) (5 Pts.) How much is the spring stretched from its relaxed (natural) length when the system is at rest in equilibrium? (b) (15 Pts.) If the hanging mass is slightly displaced downward and then released, the system will oscillate around the equilibrium configuration. Find the frequency of small oscillations. Assume that the rope does not slide over the pulley, and the pulley can rotate without friction

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 Let at any indant Totel shec spi then R 2

Add a comment
Know the answer?
Add Answer to:
5. Consider the system illustrated in the figure. The pulley with radius R and moment of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q3-(25 pts) A pulley of mass Mand radius R can rotate around its center of mass...

    Q3-(25 pts) A pulley of mass Mand radius R can rotate around its center of mass freely. Take the moment of inertia of the pulley as 1o. A string with negligible mass is wrapped around the pulley. One end of the string holds a block with mass m and the other end is attached to a spring with a force constant k. Assume no friction at any surface and string is not slipping on pulley. a) When the system is...

  • A mass m hangs on the end of a cord around a pulley of radius a and moment of inertia I, rotating...

    A mass m hangs on the end of a cord around a pulley of radius a and moment of inertia I, rotating with an angular velocity w, as shown in the figure below. The rim of the pulley is attached to a spring (with constant k). Assume small oscillations so that the spring remains essentially horizontal and neglect friction so that the conservation of energy of the system yields: 1/2mv^2 +1/2Iw^2+1/2kx^2-mgx=C, where w=v/a, C=const, x+displacement from equilibrium Find the natural...

  • The pulley in the figure (Figure 1) has radius R and a moment of inertia I. The rope does not slip...

    The pulley in the figure (Figure 1) has radius R and a moment of inertia I. The rope does not slip over the pulley, and the pulley spins on a frictionless axle. The coefficient of kinetic friction between block A and the tabletop is mu_k . The system is released from rest, and block B descends. Block A has mass m_A and block B has mass m_B Use energy methods to calculate the speed of block B as a function of the distance d that it has descended. Express your answer in terms of the variables m_A, m_B, R, I, mu_k, d and appropriate constants.

  • 3 (15 points) The pulley in the figure has radius R and a moment of inertia I. The rope does not slip over the pulley,...

    3 (15 points) The pulley in the figure has radius R and a moment of inertia I. The rope does not slip over the pulley, and the pulley spins on a frictionless axle. The system is released from rest, and the block descends. Block A has mass my, and block B ha mass mg. Use energy methods to calculate the speed of block B as a function of the distance d that it has descended. Your answer may contain R,...

  • In the figure, a very light rope is wrapped around a wheel o radius R =...

    In the figure, a very light rope is wrapped around a wheel o radius R = 2.0 m and does not slip. The wheel is mounted with frictionless bearings on an axle through Its center. A block of mass 14 kg is suspended from the end of the rope. When the system is released from rest it is observed that the block descends 10 m in 2.0 s. What is the moment of Inertia of the wheel?

  • 2. The pulley (disk) has a radius "R" and a mass "m". The rope does not...

    2. The pulley (disk) has a radius "R" and a mass "m". The rope does not slip over the pulley, and the pulley spins on a frictionless axle. The coefficient of kinetic friction between block A and the surface is "u. The system is released from rest and block B descends. Block A has a mass "2m" and block B has a mass "m Write out the forces and torque equations. Given [R, m, h, ], Determine: a. The acceleration...

  • MR A pulley of mass 3M and radius R is mounted on ftictionless bearings and supported...

    MR A pulley of mass 3M and radius R is mounted on ftictionless bearings and supported by a stand of mass 4M at rest on a table as shown to the right. The rotational inertia of this pulley about its axis is (3/2)MR2. Passing over the pulley is a massless cord supporting a block of mass M on the left and a block of mass 2M on the right. The cord does not slip on the pulley, so after the...

  • A block of mass m = 3.39 kg is attached to a spring (k = 28.7...

    A block of mass m = 3.39 kg is attached to a spring (k = 28.7 N/m) by a rope that hangs over a pulley of mass M = 6.78 kg and radius R = 7.81 cm, as shown in the figure. a) Treating the pulley as a solid homogeneous disk, neglecting friction at the axle of the pulley, and assuming the system starts from rest with the spring at its natural length, find the speed of the block after...

  • A uniform, solid cylinder with mass 5 and radius 2*1.8 rests on a horizontal table. A...

    A uniform, solid cylinder with mass 5 and radius 2*1.8 rests on a horizontal table. A string is attached by a yoke to a frictionless axle through the center of the cylinder such that the cylinder can rotate about the axle at the center. The string runs over a disk-shaped pulley with mass 5 and radius 1.8 that is mounted on a frictionless axle through its center. A block of mass 5 is suspended from the free end of the...

  • PROBLEM I- (3 pts) Figure below represents a suspension system of vehicle. It is composed by...

    PROBLEM I- (3 pts) Figure below represents a suspension system of vehicle. It is composed by a rigid half axle that pivots about a fixed point o. A support, which consists of a massless spring (with stiffness k) and a damper (with damping coefficient b) coaxially placed, is pivoted on the half shaft at one end and the body at the other end. Neglect the masse of the half shaft and assume the equilibrium position of the system to be...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT