Question

Q3-(25 pts) A pulley of mass Mand radius R can rotate around its center of mass freely. Take the moment of inertia of the pul
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Io = Moment of Inentia of pulley. m= mass of block. gb m When system is at equilibrium, let spring is stretched by a x Babnai

Add a comment
Know the answer?
Add Answer to:
Q3-(25 pts) A pulley of mass Mand radius R can rotate around its center of mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A string is wrapped around a pulley of mass m, radius r and unknown moment of...

    A string is wrapped around a pulley of mass m, radius r and unknown moment of interia. The pulley can rotate freely about its axis without friction. The loose end of the string is attached to a block of mass m. If the magnitude of the angular acceleration of the pulley is 7g/12r what is the moment of interia of the pulley?

  • 4) A solid uniform sphere mass M an radius R pivots around its center, which is...

    4) A solid uniform sphere mass M an radius R pivots around its center, which is rigged to. ntal spring of negligible mass and spring constant k. The sphere rolls without slipping along a horizontal surface. The spring is initially stretched an amount Xmax and is released from rest. Derive an expression for period of the sphere's simple harmonic motion, expressed in terms of the above variables

  • A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1). The cylinder can rotate freely...

    A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1). The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. Part A. Find the magnitude α of the angular acceleration of the cylinder as the block descends. Express your answer in terms of the cylinder's radius r and the magnitude of the acceleration due to gravity...

  • A mass m hangs from string wrapped around a pulley of radius R. The pulley has...

    A mass m hangs from string wrapped around a pulley of radius R. The pulley has a moment of inertia I and its pivot is frictionless. Because of gravity, the mass falls and the pulley rotates. The magnitude of the torque on the pulley is.. equal to mgR Not enough information greater than mgR less than mgR

  • A string is wrapped around a pulley of mass M, radius R, and moment of inertial....

    A string is wrapped around a pulley of mass M, radius R, and moment of inertial. The string is attached to a mass m; the mass m is then released. Treat the pulley as if it were a uniform disk (a) Find the acceleration of the mass m as it falls. (b) How would your answer to part (a) above change if we ignore the motion of the pulley (effectively setting the mass M -0)? m

  • A string is wrapped around a uniform solid cylinder of radius 4.60 cm, as shown in the figure. The cylinder can rotate...

    A string is wrapped around a uniform solid cylinder of radius 4.60 cm, as shown in the figure. The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block has mass 19.6 kg, and the cylinder has mass 12.3 kg. a) Find the magnitude α of the angular acceleration of the cylinder as the block descends. b)What is the acceleration of the block? c)What is the tension in the string?

  • A string is wrapped around a uniform solid cylinder of radius r, as shown in the...

    A string is wrapped around a uniform solid cylinder of radius r, as shown in the Figure below. The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. 1. Find the magnitude a of the linear acceleration of the block. 2. Find the magnitude T of the tension in the string.

  • 5. Consider the system illustrated in the figure. The pulley with radius R and moment of...

    5. Consider the system illustrated in the figure. The pulley with radius R and moment of inertia I around its fixed axis is mounted on a frictionless axle which is fixed to the table. Th has one end fixed to the table, and the other end is attached to a massless inextensible rope. Th and a mass m hangs at its other end. Initially, the system is at rest e spring with stiffness constant k e rope passes over the...

  • A block of mass m is hanging from a cord that is wrapped around a pulley...

    A block of mass m is hanging from a cord that is wrapped around a pulley with radius R and moment of inertia I. When the block is released from rest, the pulley will rotate counterclockwise. Part A Solve for the acceleration of the block (your answer can include m,g,R, and I) Part B Draw a free body diagram showing the forces that act on the block Part C What happens to the acceleration of the block if the moment...

  • A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1). The cylinder can rota...

    A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1). The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. Find the magnitude alpha of the angular acceleration of the cylinder as the block descends. Express your answer in terms of the cylinder's radius r and the magnitude of the acceleration due to gravity g.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT