Question

A block of mass m is moving on a smooth surface in the +x-direction with initial velocity Vi. It slides across a rough segmen
0 0
Add a comment Improve this question Transcribed image text
Answer #1

P. No: Initial Im Smooth for at time I though? U FBD of block (N = mg f = UN Nip appeared. to friction retardation is Fuet =mVnew - Vp + (-ukg) At Vnew - Vi - Mpeg at VnEw = vp - lg at I Ans

Add a comment
Know the answer?
Add Answer to:
A block of mass m is moving on a smooth surface in the +x-direction with initial...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m is moving on a smooth surface in the +x-direction with initial...

    A block of mass m is moving on a smooth surface in the +x-direction with initial Velocity Vi. It slides across a rough segment of width d and coefficient of kinetic friction uk and continues along the smooth surface. Find an expression for its new velocity Vnew

  • A m= 5.0 kg block slides on a flat, smooth track with an initial speed of...

    A m= 5.0 kg block slides on a flat, smooth track with an initial speed of vi= 6 m/s. The block slides down a rough incline that has a vertical height of h = 4 m onto another flat, smooth track. The block’s final speed is vf= 10 m/s. How much energy is lost to friction on the block as it slid down the incline? An m 5.0 kg block slides on a flat, smooth track with an initial speed...

  • Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface...

    Problem 4 A block of mass m slides at velocity vo across a horizontal frictionless surface toward a large curved movable ramp n and has a smooth circular frictionless face up which the block can easily slide. When the block slides up the ramp, it momentarily reaches a maximum height a shown in Figure II, and then slides back down the frictionless surface as shown in Figure III. face to the horizontal (a) Find the velocity of the ramp at...

  • A block of mass m = 78 kg slides along a horizontal surface

    A block of mass m = 78 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.29. The block has an initial speed of v0 = 29 m/s in the positive x-direction as shown. a. Write an expression for the x-component of the frictional force the block experiences, Ff, in terms of the given variables and variables available in the palette. b. What is the magnitude of the frictional force in N? c....

  • A block has an initial kinetic energy K. If the block moves in the opposite direction...

    A block has an initial kinetic energy K. If the block moves in the opposite direction with one fifth its initial speed, then what is its new kinetic energy? 4/5 K K/25 -K/5 -K/25 None of the above. A block (6 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction u 0,5. Next. it slides...

  • As shown below (not to scale), a block of mass starts from rest and slides down...

    As shown below (not to scale), a block of mass starts from rest and slides down a frictionless ramp of height h. Upon reaching the bottom of the ramp, it continues to slide across a flat frictionless surface. It then crosses a "rough patch" on the surface of length d=10m. This rough patch has a coefficient of kinetic friction uK=.1. After crossing the rough patch, the block's final speed is vf=2m/s. What is the height of the ramp? Hint: I...

  • A block of mass m = 63 kg slides along a horizontal surface.

    A block of mass m = 63 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is  μk= 0.41. The block has an initial speed of v0 = 16 m/s in the positive x-direction as shown. Part (a) Write an expression for the x-component of the frictional force the block experiences, Ff in terms of the given variables and variables available in the palette.Part (b) What is the magnitude of the frictional force in...

  • A block of mass m = 67 kg slides along a horizontal surface

    A block of mass m = 67 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.22. The block has an initial speed of v0= 16 m/s in the positive x-direction as shown.Part (a) Write an expression for the x-component of the frictional force the block experiences, Ff, in terms of the given variables and variables available in the palette. Part (b) What is the magnitude of the frictional force in...

  • DYNAMICS-15 A block with a spring attached to one end slides along a rough surface with an initia...

    DYNAMICS-15 A block with a spring attached to one end slides along a rough surface with an initial velocity of 7 m/s. After it slides 4 m, it impacts a wall for 0.1 s, and then slides 10 m in the opposite direction before coming to a stop. If the block's deceleration is assumed constant and the contraction of the spring is negligible, what is the average acceleration of the block during impact with the wall? spring block +X (A)...

  • A bullet of mass m = 8.65 g is fired into a block of mass M...

    A bullet of mass m = 8.65 g is fired into a block of mass M = 1.54 kg that is initially at rest on a rough surface as shown in the drawing below. (The coefficient of friction is 0.42 between the block and the surface.) The bullet ends up stuck in the block, and together they slide across the surface and come to rest. If the combined object slides D = 1.34 m across the surface before stopping, what...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT