Question

A rope has a mass of 2.5 kg and a length of 9.1 m. It is fixed at both ends. If the frequency of the first harmonic on this r

0 0
Add a comment Improve this question Transcribed image text
Answer #1

mass M2. Kg length =9.1m density M= 1/maar masS 2.5Kg 0.2747 Kg 9-1mm Fixst harmonic bvaguenty f-0.85H T 0.85 TMl2x9 ) = 0.27

Add a comment
Know the answer?
Add Answer to:
A rope has a mass of 2.5 kg and a length of 9.1 m. It is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 5 1 pts A rope has a mass of 2.2 kg and a length of...

    Question 5 1 pts A rope has a mass of 2.2 kg and a length of 14.4 m. It is fixed at both ends. If the frequency of the first harmonic on this rope is 0.92 Hz, what is the tension of this rope in N? Enter a number with one digit behind the decimal point.

  • A rope with a total length of 6.50 m has a mass of 0.689 kg. It...

    A rope with a total length of 6.50 m has a mass of 0.689 kg. It vibrates in a standing wave as shown below. The hanging mass provides a tension of 8.26 N. 5.00 m a) What is the mass per unit length of the rope? b) What is the wave speed on the rope? What is the frequency of the wave? A. The mass per unit length is 1.27 kg/m B. The mass per unit length is 0.106 kg/m...

  • A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of...

    A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of 400 N and is fixed at both ends. One of its resonance frequencies is 195 Hz. The next higher resonance frequency is 260 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 195 Hz 260 Hz (c) What is the length of the...

  • A string with a mass density of 4.2 x 10-3 kg/m is under a tension of...

    A string with a mass density of 4.2 x 10-3 kg/m is under a tension of 305 N and is fixed at both ends. One of its resonance frequencies is 1200 Hz. The next higher resonance frequency is 1350 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 1200 Hz 1350 Hz (C) What is the length of the...

  • PON TEACHER PRACTICE ANOTHER A string with mass density of 1.9 x 10 kg/m is under...

    PON TEACHER PRACTICE ANOTHER A string with mass density of 1.9 x 10 kg/m is under a tension of 400 N and is fixed at both ends. One of its resonance frequencies is 405 Hz. The next higher resonance frequency is 40 Hz. (a) Vhat is the fundamental frequency of this string? Hz ( Which monies have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 45 Hz 40 HE (c) What is the...

  • A steel wire having a mass of 6.30 g and a length of 1.20 m is...

    A steel wire having a mass of 6.30 g and a length of 1.20 m is fixed at both ends and has a tension of 955 N. (a) Find the speed of transverse waves on the wire. 1 405 Incorrect: Your answer is incorrect. m/s (b) Find the wavelength of the fundamental. 2 m (c) Find the frequency of the fundamental. 3 Hz (d) Find the frequency of the second harmonic. 4 Hz (e) Find the frequency of the third...

  • QUESTION 6 A rope with a total length of 6.50 m has a mass of 0.689...

    QUESTION 6 A rope with a total length of 6.50 m has a mass of 0.689 kg. It vibrates in a standing wave as shown below. The hanging mass provides a tension of 8.26 N 5.00 m a) What is the mass per unit length of the rope? b) What is the wave speed on the rope? c) What is the frequency of the wave? a) What is the mass per unit length of the rope? b) What is the...

  • A rope with a total length of 6.50 m has a mass of 0.689 kg. It...

    A rope with a total length of 6.50 m has a mass of 0.689 kg. It vibrates in a standing wave as shown below. The hanging mass provides a tension 8.26 N. 5.00 m a) What is the mass per unit length of the rope? b) What is the wave speed on the rope? What is the frequency of the wave? O A The mass per unit length is 1.27 kg/m B. The mass per unit length is 0.106 kg/m...

  • A rope has a length of 5.00 m between its two fixed points and a mass per unit length (linear density) of 40.0 g / m. if the string vibrates at a fundamental frequency of 20 Hz. a) Calculate the tension of the string. b) Calculate the frequency and wavele

    A rope has a length of 5.00 m between its two fixed points and a mass per unit length (linear density) of 40.0 g / m. if the string vibrates at a fundamental frequency of 20 Hz. a) Calculate the tension of the string. b) Calculate the frequency and wavelength of the second harmonic (n = 2). c) Calculate the frequency and wavelength of the third harmonic. d) the speed of propagation of the wave.

  • You haw a uniform string with a mass of 0.0130 kg and length 1.75 m under...

    You haw a uniform string with a mass of 0.0130 kg and length 1.75 m under a tension 10.0 N. The string is fixed at both ends, and is vibrating at its fourth resonant frequency (i.e. the fourth harmonic). What is the wavelength of the standing wave in the string? What is the frequency?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT