Question

Problem 6. You have a uniform string with a mass of 0.0130 kg and length 1.75 m under a tension 10.0 N. The string is fixed at both ends, and is vibrating at its fourth resonant frequency (i.e. the fourth harmonic). a) (2 points) What is the wavelength of the standing wave in the string? b) (2 points) What is the frequency?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Velocity ven 0 Co 0135/1.ts) m /L、 = 367 mls 2 L 2x).75 1.93再 CA,s) 41.93

Add a comment
Answer #2

Wavelength

For a standing transverse wave in a stretched string that is attached at both ends, the number of the normal mode equals the number of half wavelengths that are contained in its length. The wavelength λn of the nth normal mode is therefore

λn=2Lnn=1,2,3,...

where L denotes the string's length.

In the question, you are given L and n. Substitute to obtain the numerical answer for the wavelength.

λ4=2(1.91 m)4=0.955 m

Frequency

The frequency of the standing wave in the nth normal mode, which is the nth harmonic fn, can be found using the relation that is valid for all periodic waves

fn=vλn

where λn is the wavelength of the nth normal mode (see the formula for wavelength) and v is the speed of transverse waves in the string. This speed is not given directly, but can be obtained from the formula

v=Fm/L

where F is the given tension in the string and m and L are its given mass and length, respectively. Perform all necessary substitutions to obtain the frequency f4 in terms of given quantities.

fn=n2LFm/Ln=1,2,3,...

For the value of the fourth harmonic,




answered by: Muhammad Aslam
Add a comment
Know the answer?
Add Answer to:
You haw a uniform string with a mass of 0.0130 kg and length 1.75 m under...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is...

    a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is fixed at both ends and driven at 120 Hz. The tension is varied to obtain standing waves (resonance) on the string. 1. what is the longest wavelength for a standing wave possible on the string? 2. the tension on the string is varies to obtain fourth harmonic a. what is the wavelength of this standing wave? b. what is the wave speed 3. what...

  • A string has a linear density of 6.00 × 10-3 kg/m and is under a tension...

    A string has a linear density of 6.00 × 10-3 kg/m and is under a tension of 290 N. The string is 2.3 m long, is fixed at both ends, and is vibrating in the standing wave pattern (3rd harmonic). Determine the frequency of the traveling waves that make up the standing wave.

  • algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m....

    algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m. If the length of the string between two fixed ends is 54.6 cm, what tension is needed for fundamental frequency of middle C (261.6 Hz)? a. What is the wavelength of the fundamental mode? b. What is the speed of the waves on the string? c. What tension is needed for the fundamental frequency? 2. Sketch the waveform of the third harmonic for a...

  • You have a string with a mass of 0.0139 kg. You stretch the string with a...

    You have a string with a mass of 0.0139 kg. You stretch the string with a force of 9.59 N, giving it a length of 1.85 m. Then you vibrate the string transversely at precisely the frequency that corresponds to its fourth normal mode, that is, at its fourth harmonic. What is the wavelength of the standing wave you create in the string? What is the frequency?

  • Standing Waves A 0.75 m 'A' string on a guitar is held fixed at both ends....

    Standing Waves A 0.75 m 'A' string on a guitar is held fixed at both ends. The tension in the guitar string is adjusted untl the speed of the wave in the string is 165 m/s. Calculate the wavelength on the string and in the air when the string is set vibrating at the fourth harmonic.

  • A guitar string of length 80 cm is fixed at both ends. The string has a...

    A guitar string of length 80 cm is fixed at both ends. The string has a uniform volume density of 9000 kg/m and has a diameter of 0.75 mm. The string is under a tension of 40 N. Determine the wavelength of the fundamental harmonic on the guitar string. Calculate the wavelength of the sound wave traveling through air emitted by the first guitar string if the string is oscillating in the fundamental harmonic.

  • A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of...

    A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of 400 N and is fixed at both ends. One of its resonance frequencies is 195 Hz. The next higher resonance frequency is 260 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 195 Hz 260 Hz (c) What is the length of the...

  • A steel wire having a mass of 6.30 g and a length of 1.20 m is...

    A steel wire having a mass of 6.30 g and a length of 1.20 m is fixed at both ends and has a tension of 955 N. (a) Find the speed of transverse waves on the wire. 1 405 Incorrect: Your answer is incorrect. m/s (b) Find the wavelength of the fundamental. 2 m (c) Find the frequency of the fundamental. 3 Hz (d) Find the frequency of the second harmonic. 4 Hz (e) Find the frequency of the third...

  • A string with a mass density ? = 4.50×10-3kg/m is under a tension of F =...

    A string with a mass density ? = 4.50×10-3kg/m is under a tension of F = 224 N and is fixed at both ends. One of its resonance frequencies is 178.0 Hz. The next higher resonance frequency is 222.5 Hz. a)What is the fundamental frequency of this string? D)Now, suppose the same string is detached at one end and connected by a ring to a frictionless post, so that it can move freely. Find the wavelength of the first (fundamental)...

  • A string with a mass density of 4.2 x 10-3 kg/m is under a tension of...

    A string with a mass density of 4.2 x 10-3 kg/m is under a tension of 305 N and is fixed at both ends. One of its resonance frequencies is 1200 Hz. The next higher resonance frequency is 1350 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 1200 Hz 1350 Hz (C) What is the length of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT