Question

A guitar string of length 80 cm is fixed at both ends. The string has a...

A guitar string of length 80 cm is fixed at both ends. The string has a uniform volume density of 9000 kg/m and has a diameter of 0.75 mm. The string is under a tension of 40 N. Determine the wavelength of the fundamental harmonic on the guitar string. Calculate the wavelength of the sound wave traveling through air emitted by the first

guitar string if the string is oscillating in the fundamental harmonic.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2. 2 LA LA 15 89.2 5 S. 324 m

Add a comment
Know the answer?
Add Answer to:
A guitar string of length 80 cm is fixed at both ends. The string has a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Standing Waves A 0.75 m 'A' string on a guitar is held fixed at both ends....

    Standing Waves A 0.75 m 'A' string on a guitar is held fixed at both ends. The tension in the guitar string is adjusted untl the speed of the wave in the string is 165 m/s. Calculate the wavelength on the string and in the air when the string is set vibrating at the fourth harmonic.

  • algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m....

    algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m. If the length of the string between two fixed ends is 54.6 cm, what tension is needed for fundamental frequency of middle C (261.6 Hz)? a. What is the wavelength of the fundamental mode? b. What is the speed of the waves on the string? c. What tension is needed for the fundamental frequency? 2. Sketch the waveform of the third harmonic for a...

  • An E guitar string of length 40 cm is fixed at both ends. It vibrates at...

    An E guitar string of length 40 cm is fixed at both ends. It vibrates at the fundamental frequency of f = 330 Hz. 14) What is the velocity of a wave travelling in the string? a. 520 m/s b. 130 m/s c. 260 m/s

  • A violin string 40.00 cm long and fixed at both ends oscillates in its n =...

    A violin string 40.00 cm long and fixed at both ends oscillates in its n = 1 mode. The speed of waves on the string is 280 m/s, and the speed of sound in air is 348 m/s. What is the frequency of the emitted sound wave? (Hz) What is the wavelength of the emitted sound wave? (m)

  • A string on the violin has a length of 23.00 cm and a mass of 0.900...

    A string on the violin has a length of 23.00 cm and a mass of 0.900 grams. The tension in the string is 653.00 N. The temperature in the room is TC = 21.40°C. The string is plucked and oscillates in the n = 6 mode. What is the speed (in m/s) of the wave on the string? What is the wavelength (in mm) of the standing wave produced? What is the frequency (in kHz) of the oscillating string? What...

  • The lowest string of a certain guitar is 64 cm long and has a mass density...

    The lowest string of a certain guitar is 64 cm long and has a mass density of 6.3 g/m. The string is fixed at its ends by the bridge and the nut of the guitar. (a) What tension in the string is required to tune it so that its fundamental frequency matches the E2 musical note at 82.41 Hz? Give an answer in both N and lbs. (b) The effective string length can be shortened by pressing your finger down...

  • A string is stretched to a length of 406 cm and both ends are fixed. If...

    A string is stretched to a length of 406 cm and both ends are fixed. If the density of the string is 0.0066 g/cm, and it’s tension is 924 N, what is the fundamental frequency? Answer in units of Hz.

  • A nylon guitar string has a linear density of 4.46 g/m and is under a tension...

    A nylon guitar string has a linear density of 4.46 g/m and is under a tension of 126 N. The fixed supports are D = 72.7 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave.

  • 4. A 58.0-cm guitar string produces a sound wave with a fundamental frequency of 105 Hz....

    4. A 58.0-cm guitar string produces a sound wave with a fundamental frequency of 105 Hz. The speed of sound in air is 338 m/s. Determine the ratio of the wavelength of the waves that travel on the string to the wavelength of the generated sound wave. 2.78 0.360 0.180 0.721 5.55

  • The third harmonic of a guitar string produces a note with a frequency of 330 Hz...

    The third harmonic of a guitar string produces a note with a frequency of 330 Hz from a string with a linear mass density of 4.47*10-3 kg/m. The length of the guitar string is 0.65 meters. Draw a picture of the standing wave described above. Label the nodes and antinodes.
 Determine the wavelength of the standing wave that produces this note.
 What is the length of the guitar string (just the part that’s vibrating)?
 What is the tension in the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT