Question

A string has a linear density of 6.00 × 10-3 kg/m and is under a tension...

A string has a linear density of 6.00 × 10-3 kg/m and is under a tension of 290 N. The string is 2.3 m long, is fixed at both ends, and is vibrating in the standing wave pattern (3rd harmonic). Determine the frequency of the traveling waves that make up the standing wave.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A string has a linear density of 6.00 × 10-3 kg/m and is under a tension...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • and is under 3. A steel- string acoustic guitar has linear density of 5g/m tension of...

    and is under 3. A steel- string acoustic guitar has linear density of 5g/m tension of 180 N. The sto is oscillating wave pattern shown . If fixed apart, calculate the frequency of traveling waves (is pt) ia the standing D=75

  • A nylon guitar string has a linear density of 4.46 g/m and is under a tension...

    A nylon guitar string has a linear density of 4.46 g/m and is under a tension of 126 N. The fixed supports are D = 72.7 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave.

  • A nylon guitar string has a linear density of 33.9 g/m and is under a tension...

    A nylon guitar string has a linear density of 33.9 g/m and is under a tension of 296.0 N. The fixed supports are distance L 88.5 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the speed of the traveling waves whose superposition gives this standing wave. Submit Answer Tries o/99 Calculate the wavelength of the traveling waves whose superposition gives this standing wave Submit Answer Tries 0/99 Calculate the frequency of the...

  • A nylon guitar string has a linear density of 6.01 g/m and is under a tension...

    A nylon guitar string has a linear density of 6.01 g/m and is under a tension of 196 N. The fixed supports are D - 55.6 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question:...

  • (20 points) A certain piano wire has a linear density of 8.50 x 10-3 kg/m and...

    (20 points) A certain piano wire has a linear density of 8.50 x 10-3 kg/m and is under tension of 2.80 x 102 N. The wire is 1.80 m long and is vibrating in the pattern show in the figure below. Calculate the a) wavelength and b) the frequency of the traveling waves that make up this pattern. >

  • You haw a uniform string with a mass of 0.0130 kg and length 1.75 m under...

    You haw a uniform string with a mass of 0.0130 kg and length 1.75 m under a tension 10.0 N. The string is fixed at both ends, and is vibrating at its fourth resonant frequency (i.e. the fourth harmonic). What is the wavelength of the standing wave in the string? What is the frequency?

  • a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is...

    a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is fixed at both ends and driven at 120 Hz. The tension is varied to obtain standing waves (resonance) on the string. 1. what is the longest wavelength for a standing wave possible on the string? 2. the tension on the string is varies to obtain fourth harmonic a. what is the wavelength of this standing wave? b. what is the wave speed 3. what...

  • A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of...

    A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of 400 N and is fixed at both ends. One of its resonance frequencies is 195 Hz. The next higher resonance frequency is 260 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 195 Hz 260 Hz (c) What is the length of the...

  • A string with a mass density of 4.2 x 10-3 kg/m is under a tension of...

    A string with a mass density of 4.2 x 10-3 kg/m is under a tension of 305 N and is fixed at both ends. One of its resonance frequencies is 1200 Hz. The next higher resonance frequency is 1350 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 1200 Hz 1350 Hz (C) What is the length of the...

  • A standing wave pattern is created on a string with mass density u- 3x 10 kg/m....

    A standing wave pattern is created on a string with mass density u- 3x 10 kg/m. A wave generator with frequency f- 65 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L- 0.74 m. Initially the 3rd harmonic wave pattern is formed. What is the wavelength...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT