Question

A standing wave pattern is created on a string with mass density u- 3x 10 kg/m. A wave generator with frequency f- 65 Hz is a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here we apply concept of transverse wave on string.

kg/m u = 3 x 10 = 65 H2 I=0.74M 138 harmonic Wave 31 L (1) alt=22 d = (2)(0-74m) Wavelength, id = 0.493 m ] (of speed of wave

Add a comment
Know the answer?
Add Answer to:
A standing wave pattern is created on a string with mass density u- 3x 10 kg/m....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Name: - Harmonics Worksheet Wave on a String One end of a string with a linear...

    Name: - Harmonics Worksheet Wave on a String One end of a string with a linear mass density of 1.45 . 10-2 kg/m is tied to a mechanical vibrator that can oscillate up and down. The other end hangs over a pulley 80 cm away. The mass hanging from the free end is 3 kg. The left end is oscillated up and down, which will create a standing wave pattern at certain frequencies. Draw the first five standing wave patterns...

  • a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is...

    a 2.0 m length of string with a mass density of 2.95 x 10^-4 kg/m is fixed at both ends and driven at 120 Hz. The tension is varied to obtain standing waves (resonance) on the string. 1. what is the longest wavelength for a standing wave possible on the string? 2. the tension on the string is varies to obtain fourth harmonic a. what is the wavelength of this standing wave? b. what is the wave speed 3. what...

  • An electromagnet is used to create the standing wave pattern shown below. The string of 6...

    An electromagnet is used to create the standing wave pattern shown below. The string of 6 grams and a length of 150 cm. The tension in the string is created by the 250 gram hanging a) Determine the wavelength lambda of the travelling waves. b) Determine the speed of the travelling waves. c) Determine the frequency f and period of the travelling waves.

  • A 200 g mass is hanging from a long string draped over a pulley and attached...

    A 200 g mass is hanging from a long string draped over a pulley and attached to a fixed frequency generator which can operate in the range 60 – 120 Hz. The mass per unit length of the string is 1.51 g/m. The length of string between the frequency generator and the pulley is 90 cm. a) Which frequencies of the generator will result in standing waves on the string? b) Sketch each standing wave and list the mode (harmonic...

  • A string has a linear density of 6.00 × 10-3 kg/m and is under a tension...

    A string has a linear density of 6.00 × 10-3 kg/m and is under a tension of 290 N. The string is 2.3 m long, is fixed at both ends, and is vibrating in the standing wave pattern (3rd harmonic). Determine the frequency of the traveling waves that make up the standing wave.

  • The figure shows a standing wave on a string of length L = 1.20 m with...

    The figure shows a standing wave on a string of length L = 1.20 m with fixed ends oscillating at frequency f = 450 Hz. Answer the following questions. 1. What is the speed of wave propagation in the string? 2. The linear mass density of the string is ? = 10.0 g/m. (Note the units.) What is the tension FT in the string? 3. The tension in the string is changed to F'T = 324 N. What does the...

  • A string of length L = 1.2 m is attached at one end to a wave...

    A string of length L = 1.2 m is attached at one end to a wave oscillator, which is vibrating at a frequency f = 80 Hz. The other end of the string is attached to a mass hanging over a pulley as shown in the diagram below. When a particular hanging mass is suspended from the string, a standing wave with two segments is formed. When the weight is reduced by 2.2 kg, a standing wave with five segments...

  • part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...

    part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...

  • 1. How many wavelengths are shown in the standing wave pattern pictured below? 2. If the...

    1. How many wavelengths are shown in the standing wave pattern pictured below? 2. If the standing wave in question 1 is created using a string with linear mass density of 0.0003 kg/m and under tension of 5 N, what is the speed of the wave? 3. If the length of the string in questions 1 and 2 is 1 m, what is the frequency of the wave? 4. A standing wave is produced in a hollow tube as shown...

  • The standing wave is formed in a string with two fixed ends. The mass of the...

    The standing wave is formed in a string with two fixed ends. The mass of the string is 20.0 g and a length of 8.0 m. The tension in the string is 40.0 N. Determine the positions of the nodes and antinodes for the third harmonic. nodes: antinodes: What is the vibration frequency for this harmonic?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT