Question

Optics review D. A converging and diverging lens, each of focal length of magnitude 15.0 cm, are placed 50.0 cm apart (conver
0 0
Add a comment Improve this question Transcribed image text
Answer #1

telsom 200m 30cm 20Um mage formea by -L 15 30 3 0 beyond the temvex lens (ta l si de) Rr 30 5Cm -30 higer Jnverted inae of doLOncavr lens Taformed TTT -15 (-20) = - 8.571 20X1S -(20t15) b) Zmage is osmedl 16 Cencave lens at a distamte 8.51 lGm feuomimage formed by convex lens is real and inverted which will the image for the concave lens which is 20 cm infront of concave lens .also from this we can observe that object is inverted for the concave lens and image is virtual and erect and small in size to the object

Add a comment
Know the answer?
Add Answer to:
Optics review D. A converging and diverging lens, each of focal length of magnitude 15.0 cm,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 160 cm apart. A 2 cm tall object is 60 cm in front of the converging lens. a. Use ray tracing to find the position and height of the image. To do this, accurately use a ruler or paper with a grid. Determine the image distance and image height by making measurements on your diagram. b. Calculate the...

  • Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0...

    Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0 cm are placed 20 cm apart. An object is placed 60 cm in front of converging lens. Determine (a) the position and (b) the magnification of the final image formed (c) sketch a ray diagram for this system.

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 170 cm apart. A 3.0-cm-tall object is 60 cm in front of the converging lens. 1.) Calculate the image position. 2.) Calculate the image height.

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 160cm apart. A 3.0-cm-tall object is 60 cm in front of the converging lens. Part A Calculate the image position. Part B Calculate the image height.

  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cmare 150 cmapart. A 1.0-cm-tall object is 60 cmin front of the converging lens. Ch 19 HW Problem 19.41 8 of 8 Part A Calculate the image position Express your answer using two significant figures. Constants A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 150 cm...

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -68 cm are 188 cm apart. A 3.1-cm-tall object is 60 cm in front of the converging lens. Calculate the distance between image and diverging lens. Calculate the image height.

  • Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second...

    Two thin lenses with focal lengths of magnitude 18.0 cm, the first diverging and the second converging, are placed 11.00 cm apart. An object 3.70 mm tall is placed 4.75 cm to the left of the first (diverging) lens. (a) Where is the image formed by the first lens located? (b) How far from the object is the final image formed? (c) Is the final image real or virtual? (d) What is the height of the final image? (e) Draw...

  • A converging lens with focal length of 41.7 cm and a diverging lens with a focal...

    A converging lens with focal length of 41.7 cm and a diverging lens with a focal length of -39.3 cm are 8.5 cm apart. A 1.8-cm-tall object is 61.5 cm in front of the 41.7-cm-focal-length lens. Calculate the image height.

  • A diverging lens of focal length –30.0 cm is placed 25.0 cm behind a converging lens...

    A diverging lens of focal length –30.0 cm is placed 25.0 cm behind a converging lens of focal length 60.0 cm. A real, upright object of height 2.00 cm is placed 20.0 cm in front of the converging lens. (a) Determine the location of the final image. (Clearly state the location of the final image.) (b) Determine the size and the nature of the final image.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT