Question

An ideal gas expands from 26.0 L to 80.0 L at a constant pressure of 1.00 atm. Then, the gas is cooled at a constant volume o
0 0
Add a comment Improve this question Transcribed image text
Answer #1

o for entire process, su=o=&tw w w 3rd = -P DV = -1 [80-26] ~ ~ 54 lit atm. = Const. Volume = – Po o process: Temp = Const. II Ons = 24.7 let atm = 24.7 x 101.3 = 2502.. 1 Joule Joule

Add a comment
Know the answer?
Add Answer to:
An ideal gas expands from 26.0 L to 80.0 L at a constant pressure of 1.00...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal gas expands from 26.0 L to 80.0 L at a constant pressure of 1.00...

    An ideal gas expands from 26.0 L to 80.0 L at a constant pressure of 1.00 atm. Then, the gas is cooled at a constant volume of 80.0L back to its original temperature. It then contracts back to its original volume without changing temperature. Find the total heat flow, in joules, for the entire process. total heat flow: TOOLS x10

  • An ideal gas expands from 14.0 L to 76.0 L at a constant pressure of 1.00...

    An ideal gas expands from 14.0 L to 76.0 L at a constant pressure of 1.00 atm. Then, the gas is cooled at a constant volume of 76.0 L back to its original temperature. It then contracts back to its original volume without changing temperature. Find the total heat flow, in joules, for the entire process. total heat flow: If you combine 440.0 mL of water at 25.00 °C and 130.0 mL of water at 95.00 °C, what is the...

  • An amount of an ideal gas expands from 10.1 L to 26.9 L at a constant...

    An amount of an ideal gas expands from 10.1 L to 26.9 L at a constant pressure of 1.00 atm. Then the gas is cooled at a constant volume of 26.9 back to its original temperature. Then it contracts back at a constant temperature to its original volume. Find the total heat flow for this entire process.

  • An ideal gas expands at a constant total pressure of 2.8 atm from 420 mL to...

    An ideal gas expands at a constant total pressure of 2.8 atm from 420 mL to 770 mL . Heat then flows out of the gas at constant volume, and the pressure and temperature are allowed to drop until the temperature reaches its original value. A)calculate the total work done by the gas in the process B)calculate the total heat flow into the gas?

  • 10.0 L of an ideal diatomic gas at 1.00 atm and 200 K are contained in...

    10.0 L of an ideal diatomic gas at 1.00 atm and 200 K are contained in a cylinder with a piston. The gas first expands isobarically to 30.0 L (step 1). It then contracts adiabatically back to its original volume (step 2), and then cools isochorically back to its original pressure (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...

  • An ideal gas expands at a constant total pressure of 2.9 atm from 500 mL to...

    An ideal gas expands at a constant total pressure of 2.9 atm from 500 mL to 710 mL . Heat then flows out of the gas at constant volume, and the pressure and temperature are allowed to drop until the temperature reaches its original value. A) Calculate the total work done by the gas in the process. Express your answer to two significant figures and include the appropriate units. W = ________ B) Calculate the total heat flow into the...

  • An ideal gas expands at a constant total pressure of 3.0 atm from 450 mL to...

    An ideal gas expands at a constant total pressure of 3.0 atm from 450 mL to 850 mL . Heat then flows out of the gas at constant volume, and the pressure and temperature are allowed to drop until the temperature reaches its original value. Part A Calculate the total work done by the gas in the process. Express your answer to two significant figures and include the appropriate units. Part B Calculate the total heat flow into the gas....

  • Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 24.0...

    Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 24.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 24.0L. Now calculate the work done if this process is carried out in two steps. 1. First, let the gas expand against a constant external pressure of 1.50 atm to a volume of 16.0L. 2. From the end point of step 1,...

  • 10 moles of an ideal gas expands irreversibly against an unknown constant external pres- sure, Pert,...

    10 moles of an ideal gas expands irreversibly against an unknown constant external pres- sure, Pert, from an initial volume Vİ-1 L to a final volume ½ 11 L. In the process, the temperature of the gas falls from T350 K to T2 250 K, and it absorbs heat q+7 L atm from the surroundings. (a) What is the external pressure, Pert (in atm)? [Note: this is an ideal gas, so its internal energy depends only on its temperature.] (b)...

  • An 80.0-L volume of an ideal gas in a cylinder with a piston is at a...

    An 80.0-L volume of an ideal gas in a cylinder with a piston is at a pressure of 3.0atm. While the system is held at constant temperature, enough weight is placed on the piston to increase the external pressure to 10.0atm. For the resulting process, determine q(heat) and w(work) in units of kJ, and with proper signs. (Note: 1 L atm = 101.3 J)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT