Question

72 Laboratory 6 Organic Functional Group Tests 9. Complete the following equations: a. CH,COOH + H,0 + b, CHỊCH,NH, + HO © CH
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Page dues- 9 complete the following reaction a) CH₃COOH + H2O - CH₂ - 6-8 H30 (acid) (Base 4 I b) eth - NH2 + H2O - CH CH WH,

Add a comment
Know the answer?
Add Answer to:
72 Laboratory 6 Organic Functional Group Tests 9. Complete the following equations: a. CH,COOH + H,0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the standard free-energy change and the equilibrium constant Kc for the following reaction at 25°C....

    Calculate the standard free-energy change and the equilibrium constant Kc for the following reaction at 25°C. See Appendix C for data. Fe(s) + Cu2+ (aq) = Fe2+ (aq) + Cu(s) Find equilibrium constan + K at 25°C Appendix C Thermodynamic Quantities for Substances and Ions at 25°C Substance or lon AH; (kJ/mol) AG; (kJ/mol (J/mol-K) 20.87 Substance or lon Ba(OH),(s) ΔΗ: (kJ/mol) -946.3 --3342.2 AG (kJ/mol) -859.3 -2793 (J/mol K) 107.1 427 Ba(OH), 8H,O(s) BaSO (8) - 1473.2 -1362.3 132.2...

  • Using enthalpies of formation (Appendix C), calculate ΔH ° for the following reaction at 25°C. Also...

    Using enthalpies of formation (Appendix C), calculate ΔH ° for the following reaction at 25°C. Also calculate ΔS ° for this reaction from standard entropies at 25°C. Use these values to calculate ΔG ° for the reaction at this temperature. COCl2(g) + H2O(l ) h CO2(g) + 2HCl(g). Appendix C Thermodynamic Quantities for Substances and Ions at 25°C Substance or lon AH; (kW/mol) 0 AG: (kJ/mol) 0 S° (J/mol-K) 20.87 ΔΗ, (kJ/mol) -946.3 - 33422 AG; {kj/mol) --859,3 -2793 (J/mol-K)...

  • 4. Only ideal processes can be thermodynamically "reversible." Why can rear proce y can real process...

    4. Only ideal processes can be thermodynamically "reversible." Why can rear proce y can real processes not be? 5. Consider the following reactions. (Note: if this were an exam we would give you an excerpt on tabular data from Appendix 4 (Table A4.3). 2Fe(s) + 3Cla(s) 2FeCl(s) N2H4(8) + H2(g) + 2NH3(g) (a) Would you expect the entropy change for the above reaction to be >0, <0, or no (small)? Justify your answer. (d) Would you expect the entropy change...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT