Question

DIsk ISIO

A torsion pendulum is made from a disk of mass m = 7.2 kg and radius R = 0.74 m. A force of F = 43.1 N exerted on the edge of the disk rotates the disk 1/4 of a revolution from equilibrium.

1) What is the torsion constant of this pendulum?

2) What is the minimum torque needed to rotate the pendulum a full revolution from equilibrium?

3) What is the angular frequency of oscillation of this torsion pendulum?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A torsion pendulum is made from a disk of mass m = 7.2 kg and radius...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • . 1. A torsion pendulum consists of a 2.0 Kg solid disk of 0.15m radius. When...

    . 1. A torsion pendulum consists of a 2.0 Kg solid disk of 0.15m radius. When a 1 N.m torque is applied it displaces 150. What is its frequency of vibration? The moment of inertia for a disk is: Conversion:

  • please draw a picture Q.3 A solid disk with a mass of 36 kg and a...

    please draw a picture Q.3 A solid disk with a mass of 36 kg and a radius of 0.7 m is spinning around an axis through its center, it rotates with an angular speed of 3 full turns per second. You drop a 12 kg mass onto the disk at the edge, it sticks to the disk, reducing the angular speed to ws. Next you apply a 30 N force tangentially at the edge of the disk to slow it...

  • Level II: Oscillation A physical pendulum made from a cylinder of mass M and radius R...

    Level II: Oscillation A physical pendulum made from a cylinder of mass M and radius R attached to a rigid rod of mass M and length 2R, and pivots from one end of the rod. A.) Draw the Freebody diagram then start with the torque equation, and verify that the rigid pendulum will oscillate. B.) Determine the angular frequency and period of oscillation the physical pendulum. C.) Write the 0 as a function of time equation for the physical pendulum...

  • A uniform disk with mass m = 9.04 kg and radius R = 1.35 m lies...

    A uniform disk with mass m = 9.04 kg and radius R = 1.35 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 309 N at the edge of the disk on the +x-axis, 2) a force 309 N at the edge of the disk on the –y-axis, and 3) a force 309 N acts at the edge of the disk at an angle θ =...

  • Figure 3 Uniform disk Uniform rod 3) Figure 3 illustrates a physical pendulum comprising a uniform disk having mass M and radius R and a rod having the length R and mass M. The disk is pivotally m...

    Figure 3 Uniform disk Uniform rod 3) Figure 3 illustrates a physical pendulum comprising a uniform disk having mass M and radius R and a rod having the length R and mass M. The disk is pivotally mounted with a friction-less horizontal axis of rotation that extends through the center of mass of the disk. The rod is fixedly attached to the edge of the disk and it extends vertically downward when the pendulum is in a state of static...

  • A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies...

    A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 313 N at the edge of the disk on the +x-axis, 2) a force 313 N at the edge of the disk on the –y-axis, and 3) a force 313 N acts at the edge of the disk at an angle θ =...

  • #2. [Swinging Disk] A uniform circular disk of mass M and radius R is set swinging...

    #2. [Swinging Disk] A uniform circular disk of mass M and radius R is set swinging side-to-side about a frictionless pivot P at its edge (a) What is the disk's moment of inertia about the pivot? (b) Write an expression for the net torque acting on the disk about the pivot when the disk is displaced to the right by angle θ CM (c) Write Newton's 2nd Law for Rotation for the disk when it is displaced as shown. Be...

  • A uniform disk with mass m = 8.55 kg and radius R = 1.35 m lies...

    A uniform disk with mass m = 8.55 kg and radius R = 1.35 m lies in the xy plane and centered at the origin. Three forces act on the disk in the +y-direction (see figure below): (1) a force F1 = 335 N at the edge of the disk on the +x-axis, (2) a force F2 = 335 N at the edge of the disk on the ?y-axis, and (3) a force F3 = 335 N at the edge...

  • A uniform disk with mass m = 8.91 kg and radius R = 1.31 m lies...

    A uniform disk with mass m = 8.91 kg and radius R = 1.31 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 340 N at the edge of the disk on the +x-axis, 2) a force 340 N at the edge of the disk on the –y-axis, and 3) a force 340 N acts at the edge of the disk at an angle θ =...

  • A solid disk of mass m = 9.2 kg and radius R = 0.2 m is...

    A solid disk of mass m = 9.2 kg and radius R = 0.2 m is rotating with a constant angular velocity of w = 38 rad/s. A thin rectangular rod with mass m2 = 3.7 kg and length L = 2R = 0.4 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? kg-m2/s Submit...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT