Question

Question 2 1 pts A 312 g sample of a metal is heated to 294.133 °C and plunged into 200 g of water at a temperature of 31.977

0 0
Add a comment Improve this question Transcribed image text
Answer #1


Mass of water, m = 200 g Specificheat of water, s = 4.184 J/g °C Change in temperature AT = 87.391°C-31.977°C = 55.414 °C Amo

Add a comment
Know the answer?
Add Answer to:
Question 2 1 pts A 312 g sample of a metal is heated to 294.133 °C...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 3 1 pts A 312 g sample of a metal is heated to 257.896 °C...

    Question 3 1 pts A 312 g sample of a metal is heated to 257.896 °C and plunged into 200 g of water at a temperature of 20.43 °C. The final temperature of the water is 79.548 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • a 312 g sample of a metal is heated to 355.272 c A 312 g sample...

    a 312 g sample of a metal is heated to 355.272 c A 312 g sample of a metal is heated to 355.272 °C and plunged into 200 g of water at a temperature of 45.471 °C. The final temperature of the water is 59.19 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response...

  • A 312 g sample of a metal is heated to 383.145 °C and plunged into 200...

    A 312 g sample of a metal is heated to 383.145 °C and plunged into 200 g of water at a temperature of 29.934 °C. The final temperature of the water is 82.57 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • A 312 g sample of a metal is heated to 283.328 °C and plunged into 200...

    A 312 g sample of a metal is heated to 283.328 °C and plunged into 200 g of water at a temperature of 16.418 °C. The final temperature of the water is 69.021 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal.

  • A 312 g sample of a metal is heated to 365.343 °C and plunged into 200...

    A 312 g sample of a metal is heated to 365.343 °C and plunged into 200 g of water at a temperature of 37.758 °C. The final temperature of the water is 77.331 °C. Assuming water has a specific heat capacity of 4.184 J/g °C, what is the specific heat capacity of the metal sample, in J/g °C)? Assume no heat loss to the surroundings. Report your response to 3 digits after the decimal. 6.329 Question 3 1 pts Standard...

  • 5. Question 2 1 pts Suppose you are investigating the reaction: M(s) + 2 HCl(aq) →...

    5. Question 2 1 pts Suppose you are investigating the reaction: M(s) + 2 HCl(aq) → MCl2(aq) + H2(g). You weigh out a 0.202 gram piece of metal and combine it with 62.2 mL of 1.00 M HCl in a coffee-cup calorimeter. If the molar mass of the metal is 48.51 g/mol, and you measure that the reaction absorbed 111 J of heat, what is the enthalpy of this reaction in kJ per mole of limiting reactant? Enter your answer...

  • 2. (15 pts) A 83.5 g sample of a metal alloy is heated to 88.1°C and...

    2. (15 pts) A 83.5 g sample of a metal alloy is heated to 88.1°C and it is then placed in a coffee-cup calorimeter containing 30.0 g water at 15.0°C. The final temperature of the metal + water is 25.3 °C. Calculate the specific heat of metal alloy, in J/(g°C), assuming no heat escapes to the surroundings or is transferred to the calorimeter. The specific heat of water is 4.184 J/(g°C).

  • Specific Heat Capacity A 21.5-g sample of an unknown metal is heated to 94.0°C and is...

    Specific Heat Capacity A 21.5-g sample of an unknown metal is heated to 94.0°C and is placed in a insulated container containing 128 g of water at a temperature of 21.4°C. After the metal cools, the final temperature of the metal and water is 25.0°C. Calculate the specific heat capacity of the metal, assuming that no heat escapes to the surroundings. Heat loss=Heat gained. Specific Heat Capacity of water is 4.18 J/g/K in this temperature range. Submit Answer Incompatible units....

  • UL. HAL IVCI U IS DIUROFIN S 2. (15 pts) A 83.5 g sample of a metal alloy is heated to 88.1°C and it is then placed...

    UL. HAL IVCI U IS DIUROFIN S 2. (15 pts) A 83.5 g sample of a metal alloy is heated to 88.1°C and it is then placed in a coffee-cup calorimeter containing 30.0 g water at 15.0°C. The final temperature of the metal + water is 25.3 "C. Calculate the specific heat of metal alloy, in J/g °C), assuming no heat escapes to the surroundings or is transferred to the calorimeter. The specific heat of water is 4.184 J/g °C)....

  • A 83.5 g sample of a metal alloy is heated to 88.1oC and it is then...

    A 83.5 g sample of a metal alloy is heated to 88.1oC and it is then placed in a coffee-cup calorimeter containing 30.0 g water at 15.0oC. The final temperature of the metal + water is 25.3 oC. Calculate the specific heat of metal alloy, in J/(g oC), assuming no heat escapes to the surroundings or is transferred to the calorimeter. The specific heat of water is 4.184 J/(g oC).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT