Question

A helium–neon laser produces light with a wavelength of 638 nm. When this light is shone...

A helium–neon laser produces light with a wavelength of 638 nm. When this light is shone through a double slit apparatus, an interference pattern is produced on a screen 2.0 m away, with the distance between the first and seventh nodal lines being 5.0 cm.

(a) Determine the distance between the slits.

(b) What is the maximum number of bright fringes that could possibly appear on the screen?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ars wave lengn) 3 nn d D ddstence between the sirts Fus modal Lines →nd D -2cl dl No. of Ponge Sn e 638xo 2 No. of Maxima 2n-)

Add a comment
Know the answer?
Add Answer to:
A helium–neon laser produces light with a wavelength of 638 nm. When this light is shone...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Coherent light of wavelength 633 nm from a Helium Neon laser falls on a double slit...

    Coherent light of wavelength 633 nm from a Helium Neon laser falls on a double slit with a slit separation of 0.103 mm. An interference pattern is produced on the screen 2.56 m away from the slits. a) how far from the central maximum is the third interference maximum? b) what about the third interference minimum?

  • Light from a Helium-Neon laser (λ = 633 nm) is incident on a regular array of...

    Light from a Helium-Neon laser (λ = 633 nm) is incident on a regular array of slits with a slit spacing of a = 1.50 μm and an interference pattern is seen on a screen placed a distance of D = 4.50 m away from the slits, at what distance y from the center of the pattern will the first bright fringe occur? A) 2.10 m B) 3.60 m C) 1.20 m D) 2.40 m

  • A laser emits light that has a 6.38 x 102 nm wavelength. Upon reaching a double...

    A laser emits light that has a 6.38 x 102 nm wavelength. Upon reaching a double slit apparatus that is 2 m from a screen you observe that there is a 0.05 m gap between the first nodal line and the seventh nodal line. How far apart are the slits? How many bright fringes will fit on the screen?

  • Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.405 mm...

    Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.405 mm wide. The diffraction pattern is observed on a screen 3.30 m away. Define the width of a bright fringe as the distance between the minima on either side. (a) What is the width of the central bright fringe? mm (b) What is the width of the first bright fringe on either side of the central one? mm

  • Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.340 mm...

    Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.340 mm wide. The diffraction pattern is observed on a screen 2.95 m away. Define the width of a bright fringe as the distance between the minima on either side. A) What is the width of the central bright fringe? in m B) What is the width of the first bright fringe on either side of the central one? in m

  • Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...

    Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.45 x10^-5 m and an interference pattern is observed on a screen 2.00 m from the plane of the slits. (a) Find the angle (in degrees) from the central maximum to the first bright fringe. (b) At what angle (in degrees) from the central maximum does the second dark fringe appear? (c) Find the distance (in m) from the central maximum to the...

  • D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the...

    PLEASE ANSWER 3 AND 5 SHOW ALL ALGEBRA STEPS D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the second order fringe at 0.15 angle. The interference pattern from the slits is projected onto a screen that is 3.00 m away (a) What is the wavelength of the light used (in nm)? (b) What is the separation distance (in mm) on the screen of the second bright fringe from the central bright fringe? (c)...

  • A laser emits light at a wavelength of 488 nm at an average power of 5.00...

    A laser emits light at a wavelength of 488 nm at an average power of 5.00 mW. The laser’s produces a circular beam with a diameter of 1.00 mm. This light is then passed through a double slit projecting an interference pattern on a screen 2.25 m away. a. (10 points) If the central bright fringe is 3.50 cm wide, what is the spacing between the slits?

  • Problem Statement Light of wavelength 519 nm passes through two slits. In the interference pattern on...

    Problem Statement Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Visual Representation • Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen.

  • A double-slit experiment is performed using a helium-neon laser, with wavelength of 632.8 nm. The slit...

    A double-slit experiment is performed using a helium-neon laser, with wavelength of 632.8 nm. The slit distance is 0.5 mm, and the distance to the screen is 1.8 m. What is the width of the central bright fringe?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT