Question

A 100.0 mL of 0.50 M HCl at is reacted with 125.0mL of 0.50 M NaOH...

A 100.0 mL of 0.50 M HCl at is reacted with 125.0mL of 0.50 M NaOH in a calorimeter whose heat capacity is 500 J/C. What will the maximum temperature reached by the resulting solution if the initial temperature for the solution is 20.0°C? (Assume that the specific heat of the final solution is 4.18 J/g·°C, and that the density of the final solution is that of water.) The enthalpy change of HCl acid is neutralized by NaOH is –56 kJ/mol.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

moles of Hal in 18000 ml of 0.50m Hl. = 0.50 imol x 198 my = 0.0 Samol inoles of Naoth in 125.0m of o.som Noott - 0.50 mo & t-0 i Enthalpy change of neutralisation reaction of lund ta & imol Noot is – 56 kJ/mol Enthalpy change heren) of neutralisatiou using equation (3) 280 = 225x 4•18 x (74 – 20) + 500 x(7-26) =) 280 = (71 -20 ) [2254498)+507 -) 2500 = (2-20) x 7490.5 =)

Add a comment
Know the answer?
Add Answer to:
A 100.0 mL of 0.50 M HCl at is reacted with 125.0mL of 0.50 M NaOH...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of...

    A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. If both solutions were initially at 35.0°C and the temperature of the resulting solution was recorded as 37.0°C, determine the DH°rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HCl. Assume 1) that no heat is lost to the calorimeter or the surroundings, and 2)that the density(1.00 g/mL) and the specific...

  • A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of...

    A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of 0.300 M HCl in a calorimeter. Both solutions were initially at 35.00°C and the final temperature of the resulting solution was recorded as 37.00°C. Write a balanced chemical reaction for the neutralization reaction between aqueous NaOH and HCl, determine the number of moles of water formed in this reaction, and calculate the overall heat change of the solution. Assume 1) that no heat is...

  • If 1.85 g MgO is combined with enough 1.00 M HCl to make 100.0 mL of...

    If 1.85 g MgO is combined with enough 1.00 M HCl to make 100.0 mL of solution in a coffee- cup calorimeter, the temperature of the resulting solution increases from 21.3°C to 35.7 °C. Calculate the enthalpy change for the reaction per mole of Mgo. Assume that the specific heat capacity of the solution is 4.18 J/g.K, and the density of the solution is 1.00 g/mL. - 131 kJ O -613 kJ O-328 kJ 0 -28.3 kJ

  • In a coffee cup calorimeter, 100.0 mL of 1.00 M NaOH and 200.0 mL of 0.80...

    In a coffee cup calorimeter, 100.0 mL of 1.00 M NaOH and 200.0 mL of 0.80 M HCl are mixed at 25.0oC. After the reaction, the temperature is 29.5 oC. Assuming all solutions have a density of 1.00 g/cm3 and a specific heat capacity of 4.18 J/oC g, what is the enthalpy change (kJ) for the balanced reaction? HCl(aq) + NaOH(aq)  => NaCl(aq) + H2O(l)

  • Please answer and show work and explain 10. 100.0 mL of 0.600M HCl is reacted with...

    Please answer and show work and explain 10. 100.0 mL of 0.600M HCl is reacted with 150.0 mL of0.400M N2OH in a constant pressure calorimeter that has a heat capacity of 335 J/K. The initial temperature of each solution is 22.50°C. After the reaction the temperature is 24.90°C. Calculate AH (in kJ/mol) for the reaction assuming that the density of the solution is 1.00 g/mL and the specific heat of the solution is 4.184 J/gK 10. 100.0 mL of 0.600M...

  • 1. A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample...

    1. A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of 0.300 M HC1 in a coffee cup calorimeter. If both solutions were initially at 35.00°C and the temperature of the resulting solution was recorded as 37.00°C, determine the AH®rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HC1. Use 1.00 g/mL as the density of the solution and Cs, soin = 4.18 J/g • °C as the specific...

  • A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of...

    A 100.0 mL sample of 0.300 M NaOH is mixed with a 100.0 mL sample of 0.300 M HCl in a coffee cup calorimeter. If both solutions were initially at 35.0°C and the temperature of the resulting solution was recorded as 37.0°C, determine the experimental AHxt (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HCI. Assume that no heat is lost to the calorimeter or the surroundings, and that the density of the solution is...

  • Please help 2. Two solutions namely, 500 mL of 0.50 M HCl and 500 mL of...

    Please help 2. Two solutions namely, 500 mL of 0.50 M HCl and 500 mL of 0.50 M NaOH at the same temperature of 21.6 °C are mixed in a constant-pressure calorimeter. The heat capacity of the calorimeter was 450 J/oC. Given that the specific heat of the solution is 4.184 J/g°C, the density of the solution is 1.00 g/mL, and that the heat of neutralization for the process H* (aq) + OH (aq) -- H2O (1) is -56.2 kJ,...

  • If 1.85 g MgO is combined with enough 1.00 M HCl to make 100.0 mL of...

    If 1.85 g MgO is combined with enough 1.00 M HCl to make 100.0 mL of solution in a coffee-cup calorimeter, the temperature of the resulting solution increases from 21.3°C to 35.7 °C. Calculate the enthalpy change for the reaction per mole of Mgo. Assume that the specific heat capacity of the solution is 4.18 J/g.K, and the density of the solution is 1.00 g/mL. A 0.704 g of a pure acid, HA, is dissolved in water and an acid-base...

  • 2. A 49.21 mL volume of 1.00 M HCl was mixed with 48.05 mL of 2.00...

    2. A 49.21 mL volume of 1.00 M HCl was mixed with 48.05 mL of 2.00 M NaOH in a coffee cup calorimeter (with calorimeter constant = 25.6 J/°C) at 20.32 °C. The final temperature of the aqueous solution after the reaction was 29.83 °C. Assuming that them heat capacity of the solution is 4.18 J/g/°C, calculate the following: a. The total mass of aqueous solution inside the calorimeter (dsoln = 1.00 g/mL) g correct 1/1 b. The change in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT