Question

6.21 For a Poisson process with parameter λ show that for s <r, the correlation between N, and N, is Corr(N,, N)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A Stochastic Process {N_{t}\, , t\geq 0} with state space {0,1,...} is said to be a Poisson process with parameter \lambda \, (\lambda > 0) if:

1) N_{0}=0

2) the process has independent increments

3) the number of events in any interval of length 't' is poisson distributed with mean \lambda t i.e.

N_{t+s}-N_{s} \,\sim Poisson(\lambda t)\, , \; \forall \, s,t \geq 0.

Proof.

N_{s} \,\sim Poisson(\lambda s)\, \therefore E\left [ N_{s} \right ]=\lambda s=V\left [ N_{s} \right ]\; \; \; \; \; \; .........(1)

N_{t} \,\sim Poisson(\lambda t)\, \therefore E\left [ N_{t} \right ]=\lambda t=V\left [ N_{t} \right ]\; \; \; \; \; \; .........(1)

V[N_{s} ] =\lambda s= E[N_{s}^2]- \,E^2[N_{s}]=E[N_{s}^2]-(\lambda s)^2=E[N_{s}^2]-\lambda^2s^2

\therefore ,E[N_{s}^2]=\lambda s+\lambda^2s^2 \; \; \; ...\;\; \; \;\; \; \; \; \; \; \; \; \; \; \; \; \; \; \;............(2)

Here, 0<s<t, by definition of Covariance we have,

\begin{align*} Cov(N_{s},N_{t}) &=E[(N_{s}-E[N_{s}])(N_{t}-E[N_{t}])] \\ &=E[(N_{s}-\lambda s)(N_{t}-\lambda t)] \\ &=E[N_{s} N_{t}-N_{s}\lambda t-N_{t}\lambda s+\lambda s\,\lambda t] \\ &=E[N_{s} N_{t}]-\lambda t E[N_{s}]-\lambda s E[N_{t}]+\lambda s\,\lambda t\\ &=E[N_{s} N_{t}]-\lambda s\,\lambda t-\lambda s\,\lambda t+\lambda s\,\lambda t \\ &= E[N_{s} N_{t}]-\lambda s\,\lambda t \; \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; .......(3) \end{align*}

E[NsNt] can be rewritten as:

\begin{align*} E[N_{s}N_{t}] &=E[(N_{t}-N_{s})(N_{s}-N_{0})]+E[N_{s}^2]\; \; \; \; \; \; \; \; \; \; \; ......(4)\; \; \; \; \; \; \; \; \; \; \; (Since, N_{0}=0) \\ &=E[(N_{s}-\lambda s)(N_{t}-\lambda t)] \\ &=E[N_{s} N_{t}-N_{t}N_{0}-N_{s}^2+N_{s}N_{0} ]+E[N_{s}^2]\\ &=E[N_{s} N_{t}]-E[N_{t}N_{0}]-E[N_{s}^2]+E[N_{s}N_{0} ]+E[N_{s}^2]\\ &=E[N_{s} N_{t}]-0+0 =E[N_{s} N_{t}]\\ \end{align*}

Since, (0,s) and (s,t) are disjoint and independent,

\begin{align*} E[(N_{t}-N_{s})(N_{s}-N_{0})] &=E[(N_{t}-N_{s})]\: \; E[(N_{s}-N_{0})] \\ &=(\lambda t-\lambda s)\,(\lambda s-\lambda 0) \: \; \; \; \; \; \; \; \; \; \; \; (Since\, property\, of\, difference\, of \,two \,poisson\, process)\\ &=\lambda (t-s)\,\lambda s\; \; \; \; \; \; \; ........(5)\end{align*}From (4) and (5),

\begin{align*} E[N_{t}N_{s}]&=\lambda (t-s)\,\lambda s+ E[(N_{s}^2] \\ &=(\lambda^2 s t-\lambda^2 s^2)+\,(\lambda s+\lambda^2 s^2)\; \; \; \; \;.... From (2) \\ &=\lambda^2 s t+\,\lambda s\; \; \; \; \; \; \; \; \; \; \; \;\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; ........(6)\end{align*}

Thus, from (3) and (6),

Cov(N_{s},N_{t})=\lambda s \,...\; \; \; \; \; \; \; \; \; \; \; \; ......(7)\\ Corr(N_{s},N_{t})=\frac{Cov(N_{s},N_{t})}{\sqrt{V(N_{s})}\sqrt{V(N_{t})}}\\ Corr(N_{s},N_{t})=\frac{\lambda s}{\sqrt{\lambda s \lambda t}}\\ Corr(N_{s},N_{t})=\sqrt{\frac{s}{t}} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; From (7) and (1)

Hence the proof.

Add a comment
Know the answer?
Add Answer to:
6.21 For a Poisson process with parameter λ show that for s <r, the correlation between...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT