Question
I need questions 8-11. Thank you.
comp Atwoods Machine Equipment Qty Equipment 1 Mass and Hanger Set 1 Photogate with Pully Photogate with Pully 1 Universal T
there is a greater downwards acting to that both masses will exp mis being accelerated downwards is due to m, having a larger
8. In this experiment, we made the assumption that the tension and the acceleration experienced by the two subsystems (the tw
0 1
Add a comment Improve this question Transcribed image text
Answer #1

1 © Assumption made in pulley mass system 0 String wis massler 2 String in intensible (length constand) Massless pulley (No r9 The one percent eerd is due to the neglect the friction also the tension on both will also be different but that create weranswer11-since only 1% error in our result we can say experiment verifies the theory

Add a comment
Know the answer?
Add Answer to:
I need questions 8-11. Thank you. comp Atwood's Machine Equipment Qty Equipment 1 Mass and Hanger...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. In a classical Atwood's machine setup (like this lab), what are the forces that will...

    1. In a classical Atwood's machine setup (like this lab), what are the forces that will be discussed? a)The weight of the masses on each pulley and the tension in the string b) The weight of the masses on each pulley. c) The Mtotal times g and the tension on the string. d) The masses on each pulley and the tension in the string 2. What's the total mass of the system in our case of the Atwood's machine? a)...

  • Page 5 Atwood's Machine Problem 2: Setup an Atwood machine using a pulley, string and two...

    Page 5 Atwood's Machine Problem 2: Setup an Atwood machine using a pulley, string and two masses. Measure the acceleration of the masses when released from rest and compare to the theoretical value as calculated in Lesson notes. By measuring the elapsed time, and the vertical displacement Ay, the acceleration y, t ep is determined usingAact Compare the measured and theoretical values of a using the percent error formula (see Lesson 6 for aeory). y2 t Table 1: Experimental Data...

  • 3. For experiment A, use equations 1&3 to develop a general equation for the value of...

    3. For experiment A, use equations 1&3 to develop a general equation for the value of tension (T) based on the values of the two masses. You will need this later to answer lab question (4), so write it in now. 4. Based on the "net force" and "total mass" approach that was used to derive equations 3,4, and 5; develop the equation for acceleration of two masses (m, and m2) hanging vertically from either side of a frictionless pulley....

  • QUESTION 1 An Atwood Machine consists of two masses connected to a cord which is draped...

    QUESTION 1 An Atwood Machine consists of two masses connected to a cord which is draped over a pulley. In our experiment, what will be true about the masses? Mass 1 will vary with Mass 2 held constant. Mass 1 will vary with Mass 2 held constant. The masses will have a constant sum. The masses will have a constant mass difference. 3 points    QUESTION 2 You will get a value for acceleration for each trial from a LoggerPro...

  • tion 15 of 17 > Attempt 2 < Feedback An Atwood machine consists of two masses...

    tion 15 of 17 > Attempt 2 < Feedback An Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. Assume that the rope and pulley are massless and that there is no friction in the pulley. If the masses have the values m = 18.7 kg and m2 = 13.7 kg, find the magnitude of their acceleration a and the tension in the rope. Use g -9.81 m/s Newton's second law...

  • The diagram below shows two masses A and B connected via the ends of a light...

    The diagram below shows two masses A and B connected via the ends of a light string hung over a fixed pulley. Initially mass B is at rest on the floor and mass A is held at rest with the string in tension. Mass A is released and it falls downwards with an acceleration of 2.45 m s. A 2.5 kg 1.9 m B 1.5 kg (e) Suppose the string is cut just before mass A hits the ground. After...

  • need the “exercise” answered. thanks PRACTICE IT Use the worked example above to help you solve this problem. A block with mass m 4.30 kg and a ball with mass m2 = 7.50 kg are connected by a lig...

    need the “exercise” answered. thanks PRACTICE IT Use the worked example above to help you solve this problem. A block with mass m 4.30 kg and a ball with mass m2 = 7.50 kg are connected by a light string that passes over a frictionless pulley, as shown in figure (a). The coefficient of kinetic friction between the block and the surface is 0.300. (a) Find the acceleration of the two objects and the tension in the string. a= 5.16...

  • the question is in last picture. i provided the lab content... I need guidance. thank you....

    the question is in last picture. i provided the lab content... I need guidance. thank you. INVESTIGATION 10 ROTATIONAL MOTION OBJECTIVE To determine the moment of inertia I of a heavy composite disk by plotting measured values of torque versus angular acceleration. THEORY Newton's second law states that for translational motion (motion in a straight line) an unbalanced force on an object results in an acceleration which is proportional to the mass of the object. This means that the heavier...

  • I"1 You have two masses, mA -4.0 kg, and me 2.0kg. The masses are connected by...

    I"1 You have two masses, mA -4.0 kg, and me 2.0kg. The masses are connected by a wire, which passes over a massless, frictionless pulley. does not move Due to friction between the mass ma and the table, the system The coefficient of static friction between ma and the table is 0.75 The coefficient of kinetic friction between ma and the table is 0.60 Le 2 (a) Obtain the tension in the wire. (b) Obtain the frictional force between m,...

  • Any assistance to get me started with (b), (C), (d) , and (e) would be appreciated....

    Any assistance to get me started with (b), (C), (d) , and (e) would be appreciated. Thank you! A system consisting of two pulleys, a spring, and four masses connected by strings is shown in the diagram below. Masses 1 and 2 rest on the side of a frictionless ramp at an angle θ from horizontal. mass 3 is suspended by a pulley, and mass 4 is hanging from a spring of spring constant k displaced a distance d from...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT