Question

All numbers to the 4th decimal place please!

LI Content Lens or mirror An object is held 85.6 cm away from a mirror. The mirror has a focal length of 49.7 cm. A.) Determi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The focal length of the mirror is the a Connex mirrar. A = - 8s. 6 CA . f = 99.7 em. : = $the *, V=(-( is = 31.49 en = 3444 .

Add a comment
Know the answer?
Add Answer to:
All numbers to the 4th decimal place please! LI Content Lens or mirror An object is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Each of your eyes has a lens in it. This lens can change its shape and...

    Each of your eyes has a lens in it. This lens can change its shape and hence its focal length. By changing the focal length you are able to focus on an object based on how far away it is from you. For this problem you will determine the minimum focal length of your eye. A. Hold an object out in front of you at arm's length. Close one eye and bring the object towards your eye and determine how...

  • Each of your eyes has a lens in it. This lens can change its shape and...

    Each of your eyes has a lens in it. This lens can change its shape and hence its focal length. By changing the focal length you are able to focus on an object based on how far away it is from you. For this problem you will determine the maximum focal length of your eye. A. To determine the maximum focal length of your eye you need to establish how far you can see under ideal conditions (no fog, an...

  • A 0 cm tall object is placed 10 cm away from a concave mirror that has...

    A 0 cm tall object is placed 10 cm away from a concave mirror that has a 4.0 cm focal length. Calculate the: Image distance Image Height Magnification A 1.0 cm tall object is placed 5 cm away from a biconcave lens that has a 10.0 cm focal length. Calculate the: Image distance Image Height Magnification Using the optics as configured in #5 & #6, Draw a ray-tracing diagram, with all principle rays. What is the nature of the image?

  • The object in the figure beside is mid-way between the lens and the mirror, which are...

    The object in the figure beside is mid-way between the lens and the mirror, which are separated by a distance d-25.0 cm. The magnitude of the mirror's radius of curvature is 20.0 cm, and the lens has a focal length of-16.7 cm. Lens Object Mirronr (A) We first study the image formed by the lens only (As the spherical (a) Describe the image formed by the lens (location, magnification, real or virtual and (b) Construct a ray diagram of this...

  • A 4.00-cm tall object is placed a distance of 48 cm from a concave mirror having a focal length of 16cm.

     1. A 4.00-cm tall object is placed a distance of 48 cm from a concave mirror having a focal length of 16cm. Determine the image distance and the image size. 2. A 4.00-cm tall object is placed a distance of 8 cm from a concave mirror having a focal length of 16cm. Determine the image distance and the image size. 3. Determine the image distance and image height for a 5.00-cm tall object. placed 30.0 cm Infront of from a convex mirror...

  • A biconvex lens sits between an object and a concave spherical mirror. The lens has a...

    A biconvex lens sits between an object and a concave spherical mirror. The lens has a focal length f and the mirror has a radius of curvature of R. The object is a distance 2f from the lens and the distance from the lens to the mirror is 2f + R. The object is illuminated and light scattered from the object shines through the lens to the mirror, reflects, travels back through the lens, and forms a final image. (a)...

  • Use the thin lens equation to solve problems 14 –18. 14. An object is 10 cm...

    Use the thin lens equation to solve problems 14 –18. 14. An object is 10 cm high and is placed 20 cm in front of a converging lens of focal length 20 cm. Determine the image distance, the image height and the magnification. 15. An object is 10 cm high and is placed 16 cm in front of a converging lens of focal length 20 cm. Determine the image distance, the image height and the magnification. 16. An object is...

  • An object is placed in front of a concave mirror with a focal length of 5...

    An object is placed in front of a concave mirror with a focal length of 5 cm . The image formed is at a distance of 7.5 cm behind the mirror. The magnification factor m= An object is placed in front of a concave mirror with a focal length of 10 cm . The image formed is at a distance of 20 cm on the same side of the mirror. The magnification factor m= An object is placed in front...

  • Consider a spherical mirror and lens separated by 45 cm. The mirror is on the left...

    Consider a spherical mirror and lens separated by 45 cm. The mirror is on the left with a focal length of 100 cm. The lens is on the right with a focal length of −20 cm. A 5 cm tall object is placed 20 cm to the left of the lens. a) If you only consider the rays that move to the right from the object, fully characterize the final image in the system. In other words provide final image...

  • Suppose that distance between the lens in your eye and the retina of that eye is...

    Suppose that distance between the lens in your eye and the retina of that eye is 2.65 cm .Assume the lens of your eye needs to be able to focus on objects as far as 40 cm and as close as 20 cm . To what shortest focal length must your lens be able to adjust.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT