Question


14. Two masses are connected by a string which passes over a pulley with negligible mass and friction. One mass hangs vertica
0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

here,

14)

the mass of hanging block , m1 = 6 kg

m2 = 4 kg

theta = 30 degree

the magnitude of the acceleration of the 4 kg mass , a = net force /effective mass

a = (m1 * g - m2 * g * sin(theta)) /(m1 + m2)

a = ( 6 * 9.81 - 4 * 9.81 * sin(30)) /(6 + 4)

a = 3.92 m/s^2

the magnitude of acceleration of 4 kg mass is 3.92 m/s^2

Add a comment
Know the answer?
Add Answer to:
14. Two masses are connected by a string which passes over a pulley with negligible mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Two blocks are connected by a string that passes over a frictionless pulley, as shown in...

    Two blocks are connected by a string that passes over a frictionless pulley, as shown in the figure. The pulley has a mass of mp = 2.00 kg, and can be treated as a uniform solid disk that rotates about its center. Block A, with a mass = 3.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces, torques,...

  • Two masses are connected by a cord that passes over a pulley as shown in the...

    Two masses are connected by a cord that passes over a pulley as shown in the figure. The pulley and cord have negligible mass and m1 (2.0 kg) moves on a horizontal surface without friction, m2 (2.0 kg) is suspended vertically. What is the ACCELERATION of m1? Question4 2/2 pts Two masses are connected by a cord that passes over a pulley as shown in the figure. The pulley and cord have negligible mass and mı (2.0 kg) moves on...

  • 1) A rope of negligible mass passes over a uniform cylindrical pulley of 1.50 kg mass...

    1) A rope of negligible mass passes over a uniform cylindrical pulley of 1.50 kg mass and 0.090 m radius. The bearings of the pulley have negligible friction, and the rope does not slip on the pulley. On one end of the rope hangs a 3.00 kg bunch of bananas, and on the other end hangs a 4.50 kg monkey. Calculate the downward acceleration of the monkey and the tension in both ends of the rope. 2) A 200 g...

  • As shown in the figure below, two blocks are connected by a string of negligible mass passing over a pulley of radius 0...

    As shown in the figure below, two blocks are connected by a string of negligible mass passing over a pulley of radius 0.270 m and moment of inertia I. The block on the frictionless incline is moving with a constant acceleration of magnitude a = 1.20 m/s2. (Let m1 = 15.5 kg, m2 = 22.0 kg, and θ = 37.0°.) From this information, we wish to find the moment of inertia of the pulley. (a) What analysis model is appropriate...

  • Two objects are connected by a light string that passes over a frictionless pulley, as in...

    Two objects are connected by a light string that passes over a frictionless pulley, as in Figure P5.26. The incline is frictionless m1-2.00 kg, m2 6.00 kg, and θ-5409 rig Figure P5.26 (a) Draw free-body diagrams of both objects. (Do this on paper. Your instructor may ask you to turn in these diagrams.) This answer has not been graded yet (b) Find the accelerations of the objects. Magnitude m/s2Direction downward for mi and up the incline for m2 upward for...

  • A mass m1 is connected by a light string that passes over a pulley of mass...

    A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the acceleration of m1?

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with ma...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m1 = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.40 m/s2, and the tension in the segment of string attached to this block is T1. The hanging block has a mass of  m2 = 23.5 kg, and the tension in the string attached to it is T2....

  • Two blocks are connected by a lightweight string passing over a pulley, as shown in the...

    Two blocks are connected by a lightweight string passing over a pulley, as shown in the figure below. The block with mass m = 16.5 kg on the incline plane accelerates up the plane with negligible friction. The block's acceleration is a = 1.80 m/s2, and the tension in the segment of string attached to this block is T,. The hanging block has a mass of m, = 23.5 kg, and the tension in the string attached to it is...

  • 7. A mass (mı) is connected by a light string that passes over a pulley of...

    7. A mass (mı) is connected by a light string that passes over a pulley of mass (m3) to a mass (m2) as shown in the figure. There is no slippage between the string and the pulley. The coefficient of kinetic friction between the mass (mi) and the horizontal surface is 0.25. The inclined surface is frictionless and makes an angle of 30.0° with the horizontal. The moment of inertia of the pulley is 1m3r2. What is the magnitude of...

  • The figure below shows two blocks connected by a string of negligible mass passing over a...

    The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m1 = 3.8 kg and θ = 12.0°. Assume that the incline is smooth please dont answer if not sure The figure below shows two blocks connected by a string of negligible mass passing over a frictionless pulley. m, - 3.8 kg and -12.0°. Assume that the incline is smooth. ni (a) For what value of m2 (in kg) will the system...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT