Question

termodinamics

Steam enters an adiabatic turbine with a mass flow rate of 10 kg/s at 3 MPa, 600 °C, and 70 m/s. It exits the turbine at 40 °C, 35 m/s and a quality of 0.85. Assuming steady-state operation, determine the shaft power produced by the turbine.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
termodinamics
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Steam enters a turbine operating at steady state at 2 MPa, 360 °C with a velocity...

    Steam enters a turbine operating at steady state at 2 MPa, 360 °C with a velocity of 52 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 35 m/s. The elevation of the inlet is 1 m higher than at the exit. The mass flow rate of the steam is 21 kg/s, and the power developed is 5 MW. Let g = 9.81 m/s2. Determine the area at the inlet, in m2.

  • A) find the mass flow rate of steam and B) find the power output in KW...

    A) find the mass flow rate of steam and B) find the power output in KW of the turbine using Ein = Eout since it is in steady state In a power plant, steam enters a turbine steadily at 10 MPa and 600°C with a velocity 65 m/s and leaves at 125 kPa with a 96 percent quality. A heat loss of 22 kJ/kg occurs during the process. The inlet area of the turbine is 140 cm². Determine (a) the...

  • 4: Refrigerant-134a at 1 MPa and 90°C is to be cooled to 1 MPa and 40°C...

    4: Refrigerant-134a at 1 MPa and 90°C is to be cooled to 1 MPa and 40°C in a condenser by air. The air enters at 100 kPa and 27 C with a volume flow rate of 600 m3/min and leaves at 95 kPa and 65°C Determine the mass flow rate of the refrigerant. 5: The hot- water needs of a household are to be met by heating water at 55°F to 180°F by solar collector at a rate of 5...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling...

  • Problem-1 (200) A power plant with a mass flow rate of 281.8 Kg/s operates on a...

    Problem-1 (200) A power plant with a mass flow rate of 281.8 Kg/s operates on a regenerative vapor power cycle with one open feed-water heater. Steam enters the first turbine stage at 14 MPa, 600°C and expands to 2 MPa, where some of the steam is extracted and diverted to the open feed-water heater operating at 2 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 8 kPa. Saturated liquid exits the open feed-water...

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady...

    Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a mass flow rate of 9.5 kg/s and exits at 0.1 bar and a quality of 92%. Stray heat transfer and kinetic and potential energy effects are negligible. (a) (30 points) Determine the rate of entropy production, Ocv, in kW/K. (b) (40 points) Determine the isentropic turbine efficiency, .

  • please answer specifically the second part of the problem, concerning the shaft power output of the...

    please answer specifically the second part of the problem, concerning the shaft power output of the turbine As shown below, steam at 80 bars (8 MPa) and 450 degrees Centers a well-insulated turbine operating at steady state with a volumetric flow rate of 236 m/min. Twenty percent of the entering mass flow exits through a pipe of diameter 0.25 m at 60 bars (6 MPa) and 400 degrees C. The rest exits through a pipe of diameter 1.5 m with...

  • Steam enters the first-stage turbine shown in Fig. P4.50 at 40 bar and 500℃

    Steam enters the first-stage turbine shown in Fig. P4.50 at 40 bar and 500℃ with a volumetric flow rate of 90 m3/min. Steam exits the turbine at 20 bar and 400℃. The steam is then reheated at constant pressure to 500℃ before entering the second-stage turbine. Steam leaves the second stage as saturated vapor at 0.6 bar. For operation at steady state, and ignoring stray heat transfer and kinetic and potential energy effects, determine the(a) mass flow rate of the...

  • (thermodynamics) i need help with questions 5,6,7 5 Consider a steam power plant that operates on...

    (thermodynamics) i need help with questions 5,6,7 5 Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45MW. Steam enters the turbine at 7 MPa and 0Cand is cooed in the condenser at a pressure of 10 kPa by nuning cooling watr from a lake through the tubes of the condenser at a nte of 2000 kgs Show the cycle on a T-s diagam with respet to saturation lines,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT