Question

If the coefficient of kinetic friction of a track is 0.1, what height must an object...

  1. If the coefficient of kinetic friction of a track is 0.1, what height must an object be released to travel around a loop of radius R where the distance along the track from release point to the beginning of the loop is L? The angle the track makes with ground is \Theta . (The coefficient of kinetic friction of the loop track is 0.)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

mgmo kinetic frictios, fk = M imglose W= AKE. (mgknno-ing Coso) - Imuro = Lg (suso - ecoso) = =) V = Sage (smo-M caso). for l

Add a comment
Know the answer?
Add Answer to:
If the coefficient of kinetic friction of a track is 0.1, what height must an object...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H l...

    Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H leading to a circular loop-the loop. The center of mass of the ball will move in a circle of radius R if it goes around the loop. The moment of inertia of a solid ball is Ibull--mr. (a) Find an expression for the minimum height H for which the ball barely goes around the loop, staying...

  • A roller coaster car of mass 800 kg when released from rest at point A (height...

    A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. A) Draw below a free body diagram for the car the car at the top of the loop. B) If the normal force acting on the car at the top is 1500 N, what is the speed of the car...

  • AP Physics C FRQ 3. A sphere of mass m and radius r is released from...

    AP Physics C FRQ 3. A sphere of mass m and radius r is released from rest at the top of a curved track of height H. The sphere travels down the curved track and around a loop of radius R. The sphere rolls without slipping during the entire motion. Point A on the loop is at height R, and point B is at the top of the loop. The rotational inertia of the sphere is 2mr2/s. Express all of...

  • A roller coaster car of mass 800 kg when released from rest at point A (height...

    A roller coaster car of mass 800 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 16.0 m. The car never loses contact with the track. A) Draw below a free body diagram for the car the car at the top of the loop. B) If the normal force acting on the car at the top is 1500 N, what is the speed of the car...

  • 1. Determine the kinetic energy of the block at point C, at the top of the...

    1. Determine the kinetic energy of the block at point C, at the top of the loop. After the block slides down the loop from point C to D, it enters the rough portion of the track. The speed of the block at point D is the same as point B, and the speed of the block at point E is half the speed of the block at point D. 2. Determine the amount of work done by friction between...

  • Recitation Work - 5 In order to get full credit, you need to show all your...

    Recitation Work - 5 In order to get full credit, you need to show all your work. question 1. A force Fx = cx^3 (c = 3.0 N/m^3) acts on an object with mass 40 kg that is sliding along a rough horizontal floor (x-axis) with coefficient of kinetic friction of 0.2. A) What is the work done by the force Fx on this object as it slides from x1 = 0.0 m to x2 = 6.0 m? B) What...

  • 2. A bead slides without friction on the loop–the–loop track below. The bead is released from...

    2. A bead slides without friction on the loop–the–loop track below. The bead is released from rest at a height h = 4R where R is the radius of the circular section of the track. (a) Using energy considerations, find the speed of the bead at the highest point of the circular section A. (b) Determine the radial component of the equation of motion for the bead at point A. (c) Hence calculate the normal reaction force on the bead...

  • At an amusement park, a car of mass m rolls without friction around a track as...

    At an amusement park, a car of mass m rolls without friction around a track as shown. The car starts from rest at point A, a height h = 3R above the bottom of the loop (R is the radius of the loop). Treat the car as a point-like particle. (a) Draw the free body diagram for the car and find the car’s kinetic energy and normal force acting on the car at the top of the loop (point B)....

  • A track consists of a frictionless incline plane, which is a height of 0.5 m, and...

    A track consists of a frictionless incline plane, which is a height of 0.5 m, and a rough horizontal section with a coefficient of kinetic friction 0.02. Block A, whose mass is1.5 kg, is released from the top of the incline plane, slides down and collides instantaneously and inelastically with iden tical block B at the lowest point. The two blocks move to the right through the rough section of the track until they stop. Determine the initial potential energy...

  • A small mass m slides without friction along the looped apparatus shown in Fig

    A small mass m slides without friction along the looped apparatus shown in Fig. 6-39. If the object is to remain on the track, even at the top of the circle (whose radius is r), from what minimum height h must it be released? (Answer in terms of r.)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT