Question

A track consists of a frictionless incline plane, which is a height of 0.5 m, and...

A track consists of a frictionless incline plane, which is a height of 0.5 m, and a rough horizontal section with a coefficient of kinetic friction 0.02. Block A, whose mass is1.5 kg, is released from the top of the incline plane, slides down and collides instantaneously and inelastically with iden tical block B at the lowest point. The two blocks move to the right through the rough section of the track until they stop.

Determine the initial potential energy of block A.

Determine the kinetic energy of block A at the lowest point, just before the collision.

Find the speed of the two blocks just after the collision.

Find the kinetic energy of the two blocks just after the collision.

How far will the two blocks travel on the rough section of the track?

How much work will the friction force do during this time?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A track consists of a frictionless incline plane, which is a height of 0.5 m, and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A track consists of a frictionless arc XY, which is a quarter-circle of radius R, and...

    A track consists of a frictionless arc XY, which is a quarter-circle of radius R, and a rough horizontal section YZ, as shown above. In trial 1, Block A of mass M is released from rest at point X, slides down the curved section of the track, and collides instantaneously and inelastically with block B, with mass M, at point Y. The two blocks move together to the right, sliding past point P, which is a distance L from point...

  • A 4.5-kg block moving at 2.0 m/s west on a frictionless surface collides totally inelastically with...

    A 4.5-kg block moving at 2.0 m/s west on a frictionless surface collides totally inelastically with a second 1.0-kg block traveling east at 2.0m/s. a) Determine the final velocity of the blocks. b)Determine the kinetic energy of the first block before the collision. c)Determine the kinetic energy of the second block before the collision. d)Determine the kinetic energy of the first block after the collision. e)Determine the kinetic energy of the second block after the collision.

  • Problem 1: An object with mass m, = 2 kg slides down a frictionless incline that...

    Problem 1: An object with mass m, = 2 kg slides down a frictionless incline that makes a 25° with the horizontal (as in the figure). At the bottom of the incline, object 1 continues to travel along the rough surface with the = 0.4. Object 2, m, = 5 kg is d = 3 m away from the bottom of the incline. Object 2 is initially at rest. The height of the incline is h = 4m. h 0...

  • Problem 1: An object with mass m = 2 kg slides down a frictionless incline that...

    Problem 1: An object with mass m = 2 kg slides down a frictionless incline that makes a 25° with the horizontal (as in the figure). At the bottom of the incline, object 1 continues to travel along the rough surface with Hk = 0.4. Object 2, m2 = 5 kg is d = 3 m away from the bottom of the incline. Object 2 is initially at rest. The height of the incline is h = 4m. h 01...

  • Problem 1: An object with mass m = 2 kg slides down a frictionless incline that...

    Problem 1: An object with mass m = 2 kg slides down a frictionless incline that makes a 25° with the horizontal (as in the figure). At the bottom of the incline, object 1 continues to travel along the rough surface with Hk = 0.4. Object 2, m2 = 5 kg is d = 3 m away from the bottom of the incline. Object 2 is initially at rest. The height of the incline is h = 4m. h 0...

  • Problem 1: An object with mass m = 2 kg slides down a frictionless incline that...

    Problem 1: An object with mass m = 2 kg slides down a frictionless incline that makes a 25° with the horizontal (as in the figure). At the bottom of the incline, object I continues to travel along the rough surface with Hk = 0.4. Object 2, m2 = 5 kg is d = 3 m away from the bottom of the incline. Object 2 is initially at rest. The height of the incline is h = 4m. h 2...

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Problem 1: An object with mass m1 = 2 kg slides down a frictionless incline that...

    Problem 1: An object with mass m1 = 2 kg slides down a frictionless incline that makes a 25° with the horizontal (as in the figure). At the bottom of the incline, object 1 continues to travel along the rough surface with μk = 0.4. Object 2, m2 = 5 kg is d = 3 m away from the bottom of the incline. Object 2 is initially at rest. The height of the incline is h = 4m. a) [3...

  • Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision? Express your answer numerically in joules. Before collision: m2 After collision:

  • Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 15.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT