Question

A particle of mass 5.00 kg is attached to a spring with a force constant of...

A particle of mass 5.00 kg is attached to a spring with a force constant of 130 N/m. It is oscillating on a frictionless, horizontal surface with an amplitude of 3.00 m. A 9.00-kg object is dropped vertically on top of the 5.00-kg object as it passes through its equilibrium point. The two objects stick together.

(a) What is the new amplitude of the vibrating system after the collision?m

(b) By what factor has the period of the system changed?

(c) By how much does the energy of the system change as a result of the collision?J

(d) Account for the change in energy.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a)

at equilibrium, the object will have maximum speed

v = wA

v = sqrt ( k /m) * A

v = sqrt ( 130 / 5) * 3

v = 15.3 m/s

now, when another object is dropped and stick, this is an inelastic collision,

so,

5 * 15.23 = ( 5 + 9)v

v = 5.46 m/s

so,

new amplitude

1/2kA2 = 1/2 (5 + 9 ) v2

A = 1.792 m

--------------------

(b)

old period

T = 2\pi sqrt ( m / k)

T = 2\pi sqrt ( 5 / 130)

T = 1.232 sec

New period

T = 2\pi sqrt ( 14 / 130)

T = 2.062 sec

so,

period has changed by a factor of 2.062 / 1.232 = 1.67

------------------

(c) old energy = 1/2 * 5 * 15.32 = 585.22 J

new energy = 1/2 * 14 * 5.462 = 208.7 J

so,

energy has changed by 376.5 J

-----------------------

(d)

The lost mechanical energy has turned into internal energy in the completely inelastic collision

Add a comment
Know the answer?
Add Answer to:
A particle of mass 5.00 kg is attached to a spring with a force constant of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.40-kg mass is attached to a spring with a force constant of k = 207...

    A 0.40-kg mass is attached to a spring with a force constant of k = 207 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 2.0 cm. Determine the following. (a) mechanical energy of the system _____ J (b) maximum speed of the oscillating mass _____ m/s (c) magnitude of the maximum acceleration of the oscillating mass _____ m/s2 A 0.40-kg mass is attached to a spring with a force constant of k =...

  • A 0.90 kg mass is attached to a light spring with a force constant of 24.9...

    A 0.90 kg mass is attached to a light spring with a force constant of 24.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass Correct: Your answer is correct. m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm 1.84 Incorrect: Your answer is incorrect. Is energy conserved for this oscillating system? m/s...

  • A 0.40-kg mass is attached to a spring with a force constant of k = 337...

    A 0.40-kg mass is attached to a spring with a force constant of k = 337 N/m, and the mass-spring system is set into oscillation with an amplitude of A = 3.1 cm. Determine the following. (a) mechanical energy of the system (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2

  • A 0.40-kg mass is attached to a spring with a force constant of k = 337...

    A 0.40-kg mass is attached to a spring with a force constant of k = 337 N/m, and the mass-spring system is set into oscillation with an amplitude of A = 2.2 cm. Determine the following. (a) mechanical energy of the system J (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2

  • A 0.64 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.64 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass _____ m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm _____ m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...

  • 1) A block of mass m = 0.52 kg is attached to a spring with force...

    1) A block of mass m = 0.52 kg is attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) (a) At that instant, find the force on the block.   N   (b)...

  • A 0.76 kg mass is attached to a light spring with a force constant of 27.9...

    A 0.76 kg mass is attached to a light spring with a force constant of 27.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.56 kg mass is attached to a light spring with a force constant of 33.9...

    A 0.56 kg mass is attached to a light spring with a force constant of 33.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.28 kg mass is attached to a light spring with a force constant of 34.9...

    A 0.28 kg mass is attached to a light spring with a force constant of 34.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.40 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.40 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT