Question

4. A wall, 4 m wide in steady-state experiences uniform volumetric heat generation = 300 , shown in Figure 1. The wall has


I L= 2m Tchi T., h2 Figure 1: Heat loss from a wall.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answers:

a) T(0) = -30.12 – 487 +516

b) T1 = 0) = 516K

c) T1 =T1= -1) = 492K

d) h1 = 1.809W/mK

e) -Ime = -0.8m

  Tmar = 535.2K

Go through the pictures attached below to know the procedure

Tue, 2 L=am Given informations: Cet hom PSE qu - 300 W/m? Қиял = 5 @[ms Too; ku * To - 293 k TCL) = 300 K = Tz t Eth h2= 120

Tatu, + x = tx ****9) - KO ) Sinui Rarely Rugt » - 4* (**) Now in fright sieße Qright = hq.A.( Ta - Tiw) AKM (A-G1). 42. $: (

a> T(X) = -30x2 -48 x +516 4 Temperature distribution T = T (-1) Left = 360X A Watt w = -30(-22-48 (-2) +516 = 49.25 Temperat

- Uch | -48 XS xe 1 = -0.8m 300 Tmax = T ( Naimes) = -30 (-0.832 -48 (-0.8). +516 = 535.2K Tmax = 535.24 imat Ti = 4924 Tmax

Note: Lets verify the value of  C_1 in another way

T: =(+;8+ca

30+ 72 +(アター) = 1 ( after putting x= +L)

50+ 70-17 ) = XL- ( after putting x= -L)

12-T1 = 2C1L

→C1=(73 - 71 21

300 – 492 C= 2x2

Add a comment
Know the answer?
Add Answer to:
4. A wall, 4 m wide in steady-state experiences uniform volumetric heat generation " = 300...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform...

    A plane wall of thickness 2L= 30 mm and thermal conductivity k= 3 W/m·K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces  (x=-L, +L), each of which is exposed to a fluid of temperature ∞T∞= 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x)=a+b⁢x+c⁢x2 where a= 82.0°C, b= -210°C/m, c= -2 × 104°C/m2, and x is in meters. The origin of the x-coordinate...

  • The steady state temperature distribution across a wall, where -0.02 m, is T(X)*+bx+ A uniform heat...

    The steady state temperature distribution across a wall, where -0.02 m, is T(X)*+bx+ A uniform heat generation rate. 9. ration rate. 9. Occurs in the wall and is given in the table below. Coefficients a, b and care in units shown in the table and x is in meters. The origin of the x coordinate is at the middle of the wall as shown. Each side of the wall experiences convection from a fluid at -20°C 82 K (thermal conductivity...

  • 3.68 Consider o conduction in a plane com- posite wall. The outer surfaces are exposed to...

    3.68 Consider o conduction in a plane com- posite wall. The outer surfaces are exposed to a fluid at 25°C and a convection heat transfer coefficient of 1000 Wim K. The generation q8, while there is no generation in walls A and C. The temperatures at 261°C and T2-211 C. middle wall B experiences uniform heat the interfaces are T, T. 9a k,-25 W/rm-K LA = 30 mm c-50 W/m-K L 30 mm L 20 mnm (a) Assuming negligible contact...

  • 2. A one dimensional plane wall of thickness L=80 mm experiences uniform thermal energy generation of...

    2. A one dimensional plane wall of thickness L=80 mm experiences uniform thermal energy generation of q = 1000 W/m and is convectively cooled at x=140 mm by an ambient fluid characterized by T=30°C. If the steady state temperature distribution within the wall is T(x)mall-x)+b where a=15°C/m and b=40*C, what is the thermal conductivity of the wall? L=80mm

  • Reviewer Score 3. A plane wall of thickness 0.12m and thermal conductivity 40W/m K having uniform volumetric ene...

    Reviewer Score 3. A plane wall of thickness 0.12m and thermal conductivity 40W/m K having uniform volumetric energy generation of 0.4MW/m3 is insulated on one side, while the other side is exposed to a fluid at 52 C. The convection heat transfer coefficient between the wall and the fluid is 400W/m2-K. Determine the (20 scores) maximum temperature in the wall. 4. r,rod OA rotates with uniform o o. At the moment, AB- 6r Signatory Score leration of block B at...

  • Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k =...

    Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m.K experiences uniform volumetric heat generation at a rate ġ, while convection heat transfer occurs at both of its surfaces (x = -1, + L), each of which is exposed to a fluid of temperature Too = 20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx? where a = 82.0°C,...

  • A planar wall is composed of two materials, wall 1 has a uniform heat generation of...

    A planar wall is composed of two materials, wall 1 has a uniform heat generation of 1.5 x 106 W/m3 and a thermal conductivity of 60 Wm.Κ. Wall 2 has no heat generation and thermal resistance of 150 W/m.K. The inner surface of Wall 1 is well insulated, while the outer surface of Wall 2 is exposed to 30°C fluld. The temperature of the wall surface exposed to the fluid is most nearly 00 heat flow fluid at 30°C h...

  • 3. The wall shown in the figure below has thickness L 0.25 m and uniform thermal...

    3. The wall shown in the figure below has thickness L 0.25 m and uniform thermal conductivity k-1 W/mK. It is exposed to circulating fluid on the surface at x = L, where the temperature ofthe fluid is T-= 30°C and the convection coefficient is h = 4 W/m2.K. The surface at x = 0 is maintained at constant temperature T-20 °C. Assume ID heat flux, and that the system is at steady state a) b) Determine the temperature distribution...

  • Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity...

    Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall is exposed to convection on both sides, with different heat transfer coefficients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown (L =20 mm) and thermal conductivity of 250 W/m-K. What is the maximum temperature that will occur in the wall? L tt-2 mm k=25...

  • A wall (assumed to be 1-dimensional) has a thickness of 2L-8em and experiences uniform thermal energy...

    A wall (assumed to be 1-dimensional) has a thickness of 2L-8em and experiences uniform thermal energy generation of 9 1000 ms. The wall is cooled convectively at x = ±4 cm by a fluid at temperature T,-30°C. The steady-state temperature distribution through the wall is T(x) = a(L2-x*) + b, where a = 15°C/mz and b = 40°C. Determine 4. a. b, The thermal conductivity of the wall, k The convection coefficient, h

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT