Question

of liquid water and 0.9 m2 of water vapor in equilibrium at 600 kPa. Heat is transferred at constant pressure until the tempe
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let us solve this problem step by step: Step 1: Write all the given data - Viq=0.005 m3 Vapew = 0.9 m3 L P = 6ookpa and p = 6= map - Viap = 2.85176 0.9 0:3156 - step 4: We know that, total mas, -> m=mlig tmvap m= 4.541 + 2.8517 m=7.3927 kg so, m = 7.

Add a comment
Know the answer?
Add Answer to:
of liquid water and 0.9 m2 of water vapor in equilibrium at 600 kPa. Heat is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m3 of water vapor in...

    A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m3 of water vapor in equilibrium at 800 kPa. Heat is transferred at constant pressure until the temperature reaches 350°C. Determine: (f) The final mass of the water. H20 P 800 kPa (g) the total change in enthalpy (AH)

  • Thermodynamics A piston-cylinder system contains 0.005 m3 of liquid water and 0.8 m3 of water vapor...

    Thermodynamics A piston-cylinder system contains 0.005 m3 of liquid water and 0.8 m3 of water vapor in equilibrium at 600 kPa. Heat is transferred at constant pressure until the temperature reaches 200ºC. a- Determine the initial thermodynamic state of the system. b- Find the initial temperature of water. c- Calculate the total mass of water in the cylinder. d- Find the final volume of the system. e- Sketch the above thermodynamic process on a P-V phase diagram.

  • 3. A piston-cylinder device initially contains 3 kg saturated liquid water at 500 kPa. Now heat...

    3. A piston-cylinder device initially contains 3 kg saturated liquid water at 500 kPa. Now heat is transferred to the water until the cylinder contains saturated vapor only. Determine water m = 3 kg p = 500 kPa a) The initial and final volume of the cylinder, b) The boundary work of the piston, and c) The heat added to the system

  • Saved Required information NOTE: This is a multi-part question. Once an answer is submitted, you will...

    Saved Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A piston-cylinder device contains 0.005 m3 of liquid water and 0.85 m of water vapor in equilibrium at 600 kPa. Heat is transferred at constant pressure until the temperature reaches 200°C. Use data from the steam tables. HO P ĐỘ Ma What is the initial temperature of the water? (You must provide an answer before moving to...

  • Saturated water vapor which is initially at 500 kPa is contained in a piston-cylinder device arranged...

    Saturated water vapor which is initially at 500 kPa is contained in a piston-cylinder device arranged to maintain a constant temperature. The piston is now moved until the water becomes a saturated liquid. How much work and how much heat (in kJ/kg) are transferred during this process?

  • A mass of 5 kg of saturated liquid-vapor mixture of water is contained in a piston-...

    A mass of 5 kg of saturated liquid-vapor mixture of water is contained in a piston- cylinder device at 125 kPa. Initially. 3 kg of the water is in the liquid phase and the rest is in the vapor phase. Heat is now transferred to the water, and the piston, which is resting on a set of stops, starts moving when the pressure inside reaches 300 kPa. Heat transfer continues until the total volume increases by 10%. We denote the...

  • A piston cylinder device initially contains 1.2kg of saturated liquid water at 220oC. Now, heat is...

    A piston cylinder device initially contains 1.2kg of saturated liquid water at 220oC. Now, heat is transferred to the water until the volume quadruples and the cylinder contains saturated vapor only. Determine (a) the final volume of the tank, (b) the final temperature (c) the final pressure, and (d) the change in internal energy of the tank. To check your work, enter the final pressure in kPa in the box below.  Also, sketch this process on a T-v diagram.

  • A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this...

    A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1.5 m3. Use the data from the steam tables. a) Determine the final temperature. b) Determine the work done during this process. c)...

  • A mass of 5.5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...

    A mass of 5.5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder at 101.325 kPa. Initially, 2.3 kg of the water is in the liquid phase and the rest is in the vapor phase. Heat is now transferred to the water, and the piston, which is resting on a set of stops, starts moving when the pressure inside reaches 300 kPa. Heat transfer continues until the total volume increases by 21 percent. Determine: a) the initial...

  • Required information A piston-cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa....

    Required information A piston-cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1.3 m3. Use the data from the steam tables. Determine the final temperature. (You must provide an answer before moving on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT