Question

A space station shaped like a giant wheel has a radius of 115 m and a of inertia of S.10 x 10 kg m2.A crew of 150 lives on th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

9 Pay Conserva刌on (-Angulo. 9-81

Add a comment
Know the answer?
Add Answer to:
A space station shaped like a giant wheel has a radius of 115 m and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A space station shaped like a giant wheel has a radius of 127 m and a...

    A space station shaped like a giant wheel has a radius of 127 m and a moment of inertia of 5.08 ✕ 108 kg · m2. A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume...

  • A space station shaped like a giant wheel has a radius of 102 m and a...

    A space station shaped like a giant wheel has a radius of 102 m and a moment of inertia of 4.95. 108 kg m2. A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume that the...

  • A space station shaped like a giant wheel has a radius of 109 m and a...

    A space station shaped like a giant wheel has a radius of 109 m and a moment of inertia of 4.96 times 10^8 kg. m^2. A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1 g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume...

  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 155 m. The moment of inertia of the station without people is 2.44 × 10^9 kg · m2. Suppose that 203 people, with an average mass of 71.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is...

  • PLEASE CIRCLE ANSWER AND UNITS Chapter 09, Problem 65 A cylindrically shaped space station is rotating...

    PLEASE CIRCLE ANSWER AND UNITS Chapter 09, Problem 65 A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 103 m. The moment of inertia of the station without people is 4.96 x 10" kg-m2. Suppose 142 people, with an average mass of 51.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed...

  • A space station is in the form of a rotating wheel with a radius of 500...

    A space station is in the form of a rotating wheel with a radius of 500 m. The centripetal acceleration at the rim equals 2 times the acceleration of gravit the surface of the Earth. What is the angular speed in radians per second? How does this translate to revolutions per minute?

  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 87.0 m. The moment of inertia of the station without people is 3.18 times 10^9 kg middot m^2. Suppose that 485 people, with an average mass of 63.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is...

  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 157 m. The moment of inertia of the station without people is 5.92 x 109 kg·m2. Suppose 320 people, with an average mass of 54.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is the maximum relative...

  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 185 m. The moment of inertia of the station without people is 2.20 x 109 kg·m2. Suppose 144 people, with an average mass of 78.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is the maximum relative...

  • 4. A proposed space station has the shape of a large wheel with the living and...

    4. A proposed space station has the shape of a large wheel with the living and working space at the very outside edge (the rim) of the wheel. The space station rotates about an axis through the center, resulting in a normal force on the people inside, simulating gravity. The radius of the wheel is R = 44.6 m. When a person inside the station with a mass M = 65.4 kg steps on a scale, the measured "weight" is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT