Question

A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 155 m. The moment of inertia of the station without people is 2.44 × 10^9 kg · m2. Suppose that 203 people, with an average mass of 71.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is the maximum relative change (delta w/w)max in the station's angular speed due to the radial movement of the people?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

I min = 2.44X109 +0= 2.448109 Imax = 244 X10° + 203 x 71 x(55)? = 278627 2325 = 2.7868109 Now I min ( Wmurod = Imax (Wrin) Wm

Add a comment
Know the answer?
Add Answer to:
A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 157 m. The moment of inertia of the station without people is 5.92 x 109 kg·m2. Suppose 320 people, with an average mass of 54.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is the maximum relative...

  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 185 m. The moment of inertia of the station without people is 2.20 x 109 kg·m2. Suppose 144 people, with an average mass of 78.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is the maximum relative...

  • A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial...

    A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 87.0 m. The moment of inertia of the station without people is 3.18 times 10^9 kg middot m^2. Suppose that 485 people, with an average mass of 63.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed of the station changes. What is...

  • PLEASE CIRCLE ANSWER AND UNITS Chapter 09, Problem 65 A cylindrically shaped space station is rotating...

    PLEASE CIRCLE ANSWER AND UNITS Chapter 09, Problem 65 A cylindrically shaped space station is rotating about the axis of the cylinder to create artificial gravity. The radius of the cylinder is 103 m. The moment of inertia of the station without people is 4.96 x 10" kg-m2. Suppose 142 people, with an average mass of 51.0 kg each, live on this station. As they move radially from the outer surface of the cylinder toward the axis, the angular speed...

  • A rotating space station is said to create “artificial gravity”—a loosely-defined term used for an acceleration...

    A rotating space station is said to create “artificial gravity”—a loosely-defined term used for an acceleration that would be crudely similar to gravity. The outer wall of the rotating space station would become a floor for the astronauts, and centripetal acceleration supplied by the floor would allow astronauts to exercise and maintain muscle and bone strength more naturally than in non-rotating space environments. Randomized Variables d = 215 m   If the space station is 215 m in diameter, what angular...

  • A space station shaped like a giant wheel has a radius of 127 m and a...

    A space station shaped like a giant wheel has a radius of 127 m and a moment of inertia of 5.08 ✕ 108 kg · m2. A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume...

  • A space station shaped like a giant wheel has a radius of 102 m and a...

    A space station shaped like a giant wheel has a radius of 102 m and a moment of inertia of 4.95. 108 kg m2. A crew of 150 lives on the rim, and the station is rotating so that the crew experiences an apparent acceleration of 1g. When 100 people move to the center of the station for a union meeting, the angular speed changes. What apparent acceleration is experienced by the managers remaining at the rim? Assume that the...

  • The space station is rotating to create artificial gravity. The speed of the inner ring is...

    The space station is rotating to create artificial gravity. The speed of the inner ring is one half that of the outer ring. As an astronaut walks from the inner to the outer ring, what happens to her apparent weight? choice on of them? Her apparent weight becomes four times as great. Her apparent weight does not change. Her apparent weight becomes one-fourth as great. Her apparent weight becomes half as great.

  • l. At an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. Peo...

    l. At an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. People sit in seats facing the axis, their backs against the outer wall. At one instant the outer wall moves at a speed of 3.37 m/s, and a 59.1-kg person feels a 436-N force pressing against his back. What is the radius of a chamber?

  • At an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. People sit in s...

    At an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. People sit in seats facing the axis, their backs against the outer wall. At one instant the outer wall moves at a speed of 2.98 m/s, and an 89.3-kg person feels a 300-N force pressing against his back. What is the radius of a chamber?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT