Question

For the harmonic oscillator with mel, C=8, K:16 ; Xo = 5, Vo=4, do the following a. Find the position function x(t) and deter

0 0
Add a comment Improve this question Transcribed image text
Answer #1

harmonic motion mx!+ cxit&x=0; 40:5; VozXo = 4 (4) * + Set16% ao Assume soluten of form X=.ent (ert) +(ert) +10(277) 20 echaracters hic esnetion 72+$8 + 16 =0 I +24ungt we zo wn a4 - 2&wn ag &=fasi, 2(4) &=14 critical damping B) is n 120 X + 16x(0) = 4 5) 4 = -0 + Licz С2 3 ) X(t) = 5 cos(+1) + sin (41-5 - A = 55² + 2 = Sesti ar tact) = 576 (sicer cos(4x) + See Sin

Add a comment
Know the answer?
Add Answer to:
For the harmonic oscillator with mel, C=8, K:16 ; Xo = 5, Vo=4, do the following...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m is attached to both a spring (with given spring constant k) and a...

    A mass m is attached to both a spring (with given spring constant k) and a dashpot (with given damping constant c). The mass is set in motion with initial position X, and initial velocity vo Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form x(t) =C, e-pt cos (0,t-a). Also, find the undamped position function u(t) = Cocos (0,0+ - )...

  • Problem 4. The Fast Decay of Critically Damped Simple Harmonic Oscillator. A simple harmonic oscillator (a...

    Problem 4. The Fast Decay of Critically Damped Simple Harmonic Oscillator. A simple harmonic oscillator (a box with mass m attached to a Hook's spring of coefficient k with linear air friction of coefficient n) is described by mx"(t) + n2'(t) + ku(t) = 0 where m, n, k > 0. (a) Write down the solutions for three cases and their long term limits 1. Overdamped: when friction is strong 1 > 4mk 2. Underdamped: when friction is weak 72...

  • 1) Answer the following questions for harmonic oscillator with the given parameters and initial c...

    1) Answer the following questions for harmonic oscillator with the given parameters and initial conditions Find the specific solution without converting to a linear system Convert to a linear system Find the eigenvalues and eigenvectors of the corresponding linear system Classify the oscillator (underdamped, overdamped, critically damped, undamped) (use technology to) Sketch the direction field and phase portrait Sketch the x(t)- and v(t)-graphs of the solution a. b. c. d. e. f. A) mass m-2, spring constant k 1, damping...

  • PART A PART B PART C PART D (1 point) A mass m = 4 kg...

    PART A PART B PART C PART D (1 point) A mass m = 4 kg is attached to both a spring with spring constant k = 197 N/m and a dash-pot with damping constant c=4N s/m. The mass is started in motion with initial position to 3 m and initial velocity vo = 6 m/s. Determine the position function r(t) in meters. x(1) Note that, in this problem, the motion of the spring is underdamped, therefore the solution can...

  • Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant...

    Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant is c =24 lb-sec/ft, and the spring constant is k=52lb/ft. The motion is free damped motion and the mass is set in motion with initial position x0=5ft and the initial velocity v0= -7ft/sec. Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped.

  • (1 point) This problem is an example of critically damped harmonic motion. A mass m =...

    (1 point) This problem is an example of critically damped harmonic motion. A mass m = 6 kg is attached to both a spring with spring constant k = 150 N/m and a dash-pot with damping constant c = 60 N· s/m . The ball is started in motion with initial position Xo = 8 m and initial velocity vo = -42 m/s. Determine the position function x(t) in meters. x(t) = Graph the function x(t). Now assume the mass...

  • Math 216 Homework WebHWI, PIUUIUM A mass with mass 7 is attached to a spring with...

    Math 216 Homework WebHWI, PIUUIUM A mass with mass 7 is attached to a spring with spring constant 42 and a dashpot giving a damping 55. The mass is set in motion with initial position 6 and initial velocity 8. (All values are given in consistent units) Find the position function (t) = The motion is (select the correct description) A. underdamped B. overdamped C. critically damped 0 ). Finally find the undamped position function u(t) = Cocos(wist - 00)...

  • ® Consider a damped unforced mass-spring system with m 1, γ 2, and k 26. a) (2 points) Find if th...

    solve d ,e , f, g ® Consider a damped unforced mass-spring system with m 1, γ 2, and k 26. a) (2 points) Find if this system is critically damped, underdamped, or overdamped. b) (4 points) Find the position u(t) of the mass at any time t if u(0)-6 and (0) 0. c) (4 points) Find the amplitude R and the phase angle δ for this motion and express u(t) in the form: u(t)-Rcos(wt -)e d) (2 points) Sketch...

  • 6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is...

    6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is then submerged in a liquid that inparts a damping force equal to 4 tines the instantansous velocity. At t = 0 the mass is released from the equilibrium position with no initial velocity. An external force t)4t-3) is applied. (a) Write (t), the external force, as a piecewise function and sketch its graph b) Write the initial-value problem (c)Solve...

  • Section 3.7 Free Mechanical Vibrations: Problem 4 Previous Problem Problem List Next Problem (1 point) This...

    Section 3.7 Free Mechanical Vibrations: Problem 4 Previous Problem Problem List Next Problem (1 point) This problem is an example of critically damped harmonic motion. A mass m = 8 kg is attached to both a spring with spring constant k = 200 N/m and a dash-pot with damping constant c = 80 N s/m The ball is started in motion with initial position zo = 7 m and initial velocity vo = -39 m/s. Determine the position function r(t)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT