Question

diameter the hole. of how 42. Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in Figur

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a) using the equation of continuity we have

A1v1 = A2v2

d1^2 *v1 = d2^2*v2

6^2 *v1 = 3^2 *v2

v2 = 4v1     ------(1)

using the bernoulli's equation we have

P1 + 0.5pv1^2 + pgh1 = P2 + 0.5pv2^2 + pgh2

17500 + 0.5*1000*v1^2 + 0 = 12000 + 0.5*1000*(4v1)^2 + 1000*9.8*0.25

v1 = 0.64 m/s

b) in the upper section v2 = 4v1 = 4*0.64 = 2.55 m/s

c) volume flow rate = A1v1

              = pi/4*0.06^2 * 2.55

             = 7.2*10^-3 m^3 / s

Add a comment
Know the answer?
Add Answer to:
diameter the hole. of how 42. Water moves through a constricted pipe in steady, ideal flow....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.70 x 104 Pa, and the pipe diameter is 8.0 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.30 x 104 Pa and the pipe diameter is 4.00 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section....

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.65 ✕ 105 Pa and the pipe radius is 2.50 cm. At the higher point located at y = 2.50 m, the pressure is 1.22 ✕ 105 Pa and the pipe radius is 1.20 cm (a) Find the speed of flow in the lower section. (b) Find the speed of flow in the upper section. (c) Find the...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 1.85*10^4 Pa, and the pipe diameter is 5.0 cm. At another point y = 0.30 m higher, the pressure is P2 = 1.00*10^4 Pa and the pipe diameter is 2.50 cm. A) Find the speed of flow in the lower section B) Find the speed of flow in the upper section C) Find the volume of...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.85 ✕ 105 Pa and the pipe radius is 2.50 cm. At the higher point located at y = 2.50 m, the pressure is 1.30 ✕ 105 Pa and the pipe radius is 1.20 cm. A pipe is open at both its left and right ends. The pipe starts at the left end, extends horizontally to the right,...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.65 ✕ 105 Pa and the pipe radius is 2.50 cm. At the higher point located at y = 2.50 m, the pressure is 1.30 ✕ 105 Pa and the pipe radius is 1.20 cm.

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.70 x 105 Pa and the pipe radius is 2.60 cm. At the higher point located at y = 2.50 m, the pressure is 1.24 x 10 Pa and the pipe radius is 1.70 cm. (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s (c)...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.80 x 105 Pa and the pipe radius is 2.70 cm. At the higher point located at y = 2.50 m, the pressure is 1.28 x 105 Pa and the pipe radius is 1.40 cm. LOG (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.65 x 105 Pa and the pipe radius is 2.70 cm. At the higher point located at y = 2.50 m, the pressure is 1.27 x 105 Pa and the pipe radius is 1.30 cm. P (a) Find the speed of flow in the lower section. m/s (b) Find the speed of flow in the upper section. m/s...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.85 ? 105 Pa and the pipe radius is 2.80 cm. At the higher point located at y=2.50 m, the pressure is 1.23 X 105 and the pipe radius os 1.3 cm (a) Find the speed of flow in the lower section. (b) Find the speed of flow in the upper section. (c) Find the volume flow rate...

  • Water moves through a constricted pipe in steady, ideal flow.

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.85 × 10⁵ Pa and the pipe radius is 2.60 cm. At the higher point located at y=2.50 m, the pressure is 1.25 × 10⁵ Pa and the pipe radius is 1,70 cm.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT