Question

1. Apply a recursion approach to solve the folliowing causal LTY system problem (a) Find and sketch the impulse response, hEn

0 0
Add a comment Improve this question Transcribed image text
Answer #1

y (a) 22 32 22-1 (1-322- -1-1 e+은 Aprlying -Z . T hven e st FiR i-22- - 32) consists 어 balh Numerato (moving average) and given s/mis 11R ep res Ponse В に3z じy3)(1-y) 3 疒曰14t 0 (1+3 (1リ 3 위) 리-21 (1-32)で句-网 T 25 Draw the de c ımplemen ld:o, d orm Cun Ss lhe above e above dHernreghalion. 어 ee nre ezuatiorn (z) 2+ 2- (1-2 32- 4(1-22-3군 1-27-32 AW » (4 3

Add a comment
Know the answer?
Add Answer to:
1. Apply a recursion approach to solve the folliowing causal LTY system problem (a) Find and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please show full Calculations for part C) 1. Consider the following causal LTI systems with difference...

    Please show full Calculations for part C) 1. Consider the following causal LTI systems with difference equations (a) yIn]+3 y[n-1]+2y[n-2] - x[n] + 2xln-1] (b) y[n] +0.8 y[n-21 x[n-1]. (c) y[n] -0.5 yln-2 2x[n] -xln-21]. In each of cases a,b and c i) Find and sketch the impulse response, hin) by recursive solution. ii) Is the system FIR or IIR ? ii) Find and sketch the corresponding step response, s[n] iv) Draw the direct form & direct-form Il structures for...

  • please show detailed work/proof 3. The input and output of a causal LTI system satisfy the...

    please show detailed work/proof 3. The input and output of a causal LTI system satisfy the following difference equation (d.e.) y[n] = ayln-1] + x[n]-a"x[n-N], N > 0 a. Determine the impulse response h[n]. Hint: solve it iteratively starting from n=0, 1, , n=N+1; x[n] = δ[n] then think what is y[n] ? b. Sketch the impulse response h[n] c. Is this an FIR or an IIR system? d. For what values of the parameter a is the system stable?

  • Problem 3. The input and the output of a stable and causal LTI system are related...

    Problem 3. The input and the output of a stable and causal LTI system are related by the differential equation dy ) + 64x2 + 8y(t) = 2x(t) dt2 dt i) Find the frequency response of the system H(jw) [2 marks] ii) Using your result in (i) find the impulse response of the system h(t). [3 marks] iii) Find the transfer function of the system H(s), i.e. the Laplace transform of the impulse response [2 marks] iv) Sketch the pole-zero...

  • Please show all the steps clearly. Find the system transfer function of a causal LSI system...

    Please show all the steps clearly. Find the system transfer function of a causal LSI system whose impulse response is given by 2. 0.5)"l sin[0.5(n- 2)]u[n - 2] and express the result in positive powers of z. 72-1 h[n] = Hint: The transfer function is just the z-transform of impulse response. However, we must first convert the power of -0.5 from (n - 1) to (n - 2) by suitable algebraic manipulation Find the system transfer function of a causal...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • 4- Let the step response of a linear, time-invariant, causal system be (-1).uln] ylnl.ynl-ler uln...

    4- Let the step response of a linear, time-invariant, causal system be (-1).uln] ylnl.ynl-ler uln].. 15 3 3 12 a) Find the transfer function H(Z) of this system b) Find the impulse response of the system. Is this system stable? c) Find the difference equation representation of this system. 4- Let the step response of a linear, time-invariant, causal system be (-1).uln] ylnl.ynl-ler uln].. 15 3 3 12 a) Find the transfer function H(Z) of this system b) Find the...

  • Problem 4. (20 points): Consider a causal LTI system that is described by the difference equation...

    Problem 4. (20 points): Consider a causal LTI system that is described by the difference equation Find the impulse response sequence h[n] by computing the system function H(S2)

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • Problem 2: Find the impulse response h(n) of a causal LTI system if the input x(n)...

    Problem 2: Find the impulse response h(n) of a causal LTI system if the input x(n) and the output y(n) are given as follows 72 42)un-1) y(n)-G)na(n) xnun)

  • a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is...

    a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is the input signal and y(n) the output signal. Find and sketch the impulse response of the system

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT