Question

Please explain how to get angle for neutral axis and find highest tensile stress not compressionProblem 4- For the following cross section (all dimensions in mm) determine: a) The location and magnitude of the greatest te

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(c) Draw the given cross-sectional area as follows: 300 mm 300 mm NA ....NA 150 mm 150 mm | 150 mmCalculate the location of the neutral axis as follows: 1 - 4y; – 4,92 4 – A, - (300x600x300) – (150x150x225) (300x600)-(150x1Compresssion NA...... M Compresssion Tension Tension D NA Compression and tension are shown in the figure above. Then maximuCalculate the moment of inertia about the neutral axis as follows: , _ 600x3009150x1503 12 12 1, = 1.3078125x109 mm (300x600M. = M cos 30° M. = 100x cos 30° M. =86.6x10“ N.mm +- max = Calculate the maximum tensile stress as follows: M,x150 M.310.71(b) 0A- 1, Calculate the stress at point A as follows: M,,x150 M x310.71 41, 1. 50x10° x150 86.6x10º 310.71 04 – 1.3078125x10

Add a comment
Know the answer?
Add Answer to:
Please explain how to get angle for neutral axis and find highest tensile stress not compression...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3) (40 pts) The EXTERNAL 35 kN force P is applied to the end of a 2 m long cantilever beam with t...

    3) (40 pts) The EXTERNAL 35 kN force P is applied to the end of a 2 m long cantilever beam with the given cross section. The force acts through the shear center, forming an angle of 35 with the horizontal axis. The x, y axes pass through the centroid C. The y-axis can be assumed to coincide with the right- hand edge of the vertical section. Determine (a) the normal bending stress at Point A, (b) normal bending stress...

  • 1. A steel angle has a cross-section as indicated. Find the horizontal neutral axis (N.A.) and...

    1. A steel angle has a cross-section as indicated. Find the horizontal neutral axis (N.A.) and moment of inertia (I) for the indicated shape. 2. The steel angle from problem 1 is used as a beam to span 8.5 feet. A heavy mechanical pipe is suspended from the beam at mid­span. The load from the pipe is 2,350 lbs. a)   Draw a free body diagram for the beam, and determine the reactions at each end of the beam. b)   The...

  • Q1. A 2 m long T-beam is built-in at one end and has a force of...

    Q1. A 2 m long T-beam is built-in at one end and has a force of 7 kN applied at its free end. The dimensions of the cross-section of the beam are shown in Fig. Q1 and the force acts at 10° to the vertical though the centroid of the section. 7 KN 1 -10° 251 -y 100 1 44 32 44 all dimensions in mm Fig. Q1 - Cross-sectional Dimensions of T-beam (a) Find the position of the centroid...

  • Question 4: (25 marks) A hollow rectangular cross-section (Figure 4) is subject to the combined effect...

    Question 4: (25 marks) A hollow rectangular cross-section (Figure 4) is subject to the combined effect of A torque T (causing downward shear stress in the right wall and upward shear stress in the left wall): T= 60 kNm. A negative bending moment M about the horizontal centroidal x-axis (causing tension in the top part of the cross-section): M= 100 kNm. Given t 15 mm: i. Determine the maximum tensile stress at A on the x-axis on the left wall...

  • Question 4: (25 marks) A hollow rectangular cross-section (Figure 4) is subject to the combined effect...

    Question 4: (25 marks) A hollow rectangular cross-section (Figure 4) is subject to the combined effect of A torque T (causing downward shear stress in the right wall and upward shear stress in the left wall): T= 60 kNm. A negative bending moment M about the horizontal centroidal x-axis (causing tension in the top part of the cross-section): M= 100 kNm. Given t 15 mm: i. Determine the maximum tensile stress at A on the x-axis on the left wall...

  • Review Learning Goal: To use the superposition principle to find the state of stress on a...

    Review Learning Goal: To use the superposition principle to find the state of stress on a beam under multiple loadings The beam shown below is subjected to a horizontal force P via the rope wound around the pulley. The state of stress at point A is to be determined. Part A - Support Reactions and Internal Loading Determine the support reactions Cy and Cz and the internal normal force, shear force, and moment on the cross-section containing point A. Express...

  • 3-34 For each section illustrated, find the second moment of area, the location of the neutral...

    3-34 For each section illustrated, find the second moment of area, the location of the neutral axis, and the distances from the neutral axis to the top and bottom surfaces. Consider that the section is transmitting a positive bending moment about the z axis, M., where M. = 10 kipin if the dimen- sions of the section are given in ips units, or M. = 1.13 kNm if the dimensions are in SI units. Determine the resulting stresses at the...

  • 3) (35 pts) A L-beam has the cross section shown. A moment M acts about the...

    3) (35 pts) A L-beam has the cross section shown. A moment M acts about the x-axis which passes through the centroid of the section. Determine the angle the neutral axis makes with respect to the +x- axis. Sketch it on the cross section. Given the design flexural stress limit is 100 MPa, determine the maximum allowable moment which can be applied. You only need to evaluate the stresses at points A, 8. Helpful hint: Remember to change the sign...

  • 3) (35 pts) A L-beam has the cross section shown. A moment M acts about the...

    3) (35 pts) A L-beam has the cross section shown. A moment M acts about the x-axis which passes through the centroid of the section. Determine the angle the neutral axis makes with respect to axis. Sketch it on the cross section. Given the design flexural stress limit is 100 MPa, determine the maximum allowable moment which can be applied. You only need to evaluate the stresses at points A, B. Helpful hint: Remember to change the sign of your...

  • For each section illustrated, find the second moment of area, the location of the neutral axis,...

    For each section illustrated, find the second moment of area, the location of the neutral axis, and the distances from the neutral axis to the top and bottom surfaces. Consider that the section is transmitting a positive bending moment about the z axis, M, where M. 1.13 kN m. Determine the resulting stresses at the top and bottom surfaces and at every abrupt change in the cross section. om 6 mm 25 mim 25 1mm Ca) 3y 100 ー75 12.5...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT