Question

Let (X, d) be a metric space and give R the usual Euclidean metric. Assume that f:XR is continuous. (a) S the set {x E X | f(

PLEASE PUT SOLUTION IN THE FORM OF A FORMAL PROOF.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Assune that SOV et uce obeved that both (an cin then Als vet- aldo) İ3 open in in that (a o) open in 1R on Ca o) open in is o

Add a comment
Know the answer?
Add Answer to:
PLEASE PUT SOLUTION IN THE FORM OF A FORMAL PROOF. Let (X, d) be a metric...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please put the solution in the form of a formal proof. Show that the discrete metric...

    Please put the solution in the form of a formal proof. Show that the discrete metric is always complete.

  • Please answer in the style of a formal proof and thoroughly reference any theorems, lemmas or...

    Please answer in the style of a formal proof and thoroughly reference any theorems, lemmas or corollaries utilized. BUC stands for bounded uniformly continuous Let (X, d) be a metric space. Show that the set V of Lipschitz continu- ous bounded functions from X to R is a dense linear subspace of BUC(X, R). Since, in general, V #BUC(X, R), V is not a closed subset of BUC(X, R). Hint: For f EBUC(X, R) define the sequence (fr) by fn(x)...

  • 1. (a) Let d be a metric on a non-empty set X. Prove that each of...

    1. (a) Let d be a metric on a non-empty set X. Prove that each of the following are metrics on X: a a + i. d(1)(, y) = kd(x, y), where k >0; [3] ii. dr,y) d(2) (1, y) = [10] 1+ d(,y) The proof of the triangle inequality for d(2) boils down to showing b + > 1fc 1+a 1+b 1+c for all a, b, c > 0 with a +b > c. Proceed as follows to prove...

  • Part 2: Metrics and Norms 1. Norms and convergence: (a) Prove the l2 metric defined in...

    Part 2: Metrics and Norms 1. Norms and convergence: (a) Prove the l2 metric defined in class is a valid norm on R2 (b) Prove that in R2, any open ball in 12 ("Euclidean metric") can be enclosed in an open ball in the loo norm ("sup" norm). (c). Say I have a collection of functions f:I R. Say I (1,2). Consider the convergence of a sequence of functions fn (z) → f(x) in 12-Show that the convergence amounts to...

  • (TOPOLOGY) Prove the following using the defintion: Exercise 56. Let (M, d) be a metric space...

    (TOPOLOGY) Prove the following using the defintion: Exercise 56. Let (M, d) be a metric space and let k be a positive real number. We have shown that the function dk defined by dx(x, y) = kd(x,y) is a metric on M. Let Me denote M with metric d and let M denote M with metric dk. 1. Let f: Md+Mk be defined by f(x) = r. Show that f is continuous. 2. Let g: Mx + Md be defined...

  • Problem 1. Let (X, d) be a metric space and t the metric topology on X....

    Problem 1. Let (X, d) be a metric space and t the metric topology on X. (a) Fix a E X. Prove that the map f :(X, T) + R defined by f(x) = d(a, x) is continuous. (b) If {x'n} and {yn} are Cauchy sequences, prove that {d(In, Yn)} is a Cauchy sequence in R.

  • Jet f be continuons one to one m compact metric space X onto a metric space...

    Jet f be continuons one to one m compact metric space X onto a metric space Y. Prove that f'Y ~ X is continuoms (Hint: use this let X and Y e metric space, and let f be function from X to Y which is one to one and onto then the following three statments are equivalent. frs open, f is closed, f is continuous.

  • Let X be metric space, and let g:X + R be uniformly continuous and h: R+R...

    Let X be metric space, and let g:X + R be uniformly continuous and h: R+R be continuous. (c) If h is uniformly continuous on R, then goh is uniformly continuous. (b) If g(x) = {g(x) : x € X} is a bounded set,(i.e. there exists M > 0 such that g(x) < M for all X E X.) then go h is uniformly continuous.

  • B2. (a) Let I denote the interval 0,1 and let C denote the space of continuous functions I-R. Def...

    B2. (a) Let I denote the interval 0,1 and let C denote the space of continuous functions I-R. Define dsup(f,g)-sup |f(t)-g(t) and di(f.g)f (t)- g(t)ldt (f,g E C) tEI (i) Prove that dsup is a metric on C (ii) Prove that di is a metric on C. (You may use any standard properties of continuous functions and integrals, provided you make your reasoning clear.) 6 i) Let 1 denote the constant function on I with value 1. Give an explicit...

  • Let X be a metric space and let E C X. The boundary aE of E...

    Let X be a metric space and let E C X. The boundary aE of E is defined by E EnE (a) Prove that DE = E\ E°. Here Eo is the set of all interior points of E; E° is called the interior of E (b) Prove that E is open if and only if EnaE Ø. (c) Prove that E is closed if and only if aE C E (d) For X R find Q (e) For X...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT