Question

Problem #1 (KPI 1.3.2) (1 point) A spring-mass-damper system is subjected to a harmonic force such as r = 0.95 Choose the corPlease answer it thanks

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ask in comment box if any doubtsanswer=c 258 V (1-2²+ (24r } x=dst getan ( 23 1 / 2 ) Pictv2ft2&vij? a) x=0 mean renominaters or Q=150, knezo rzo x = dst in

Add a comment
Know the answer?
Add Answer to:
Please answer it thanks Problem #1 (KPI 1.3.2) (1 point) A spring-mass-damper system is subjected to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed...

    Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed by the equation of motion where m is the mass, c is the damping coefficient of the damper, k is the stiffness of the spring, F is the net force applied on the mass, and x is the displacement of the mass from its equilibrium point. In this problem, we focus on a mass-damper-spring system with m = 1 kg, c-4 kg/s, k-3 N/m,...

  • 1. A spring-mass-damper system of M =0.05 Ib.s/in, K=15 lb/in, and C =0.7 Ib.s/in is subjected...

    1. A spring-mass-damper system of M =0.05 Ib.s/in, K=15 lb/in, and C =0.7 Ib.s/in is subjected to a harmonic force F(t)=30 Cos (10t) Ibf. Determine: (a) The equation of motion of the system (b) The response as function of time (c) The value of the resonance frequency (d) The transmitted force (e) The range of frequencies for which greater force would be transmitted (f) Redesign the system such that only full force is transmitted to the foundation Plt) x(+)

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mi+ci +kx- Asin(ot) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor un-damped natural frequency on a. and the A second order mechanical system of a...

  • Problem 2 - A modified mass-spring-damper system: Model the modified mass-spring-damper system shown below. The mass...

    Problem 2 - A modified mass-spring-damper system: Model the modified mass-spring-damper system shown below. The mass of the handle is negligi- ble (only 1 FBD is necessary). Consider the displacement (t) to be the input to the system and the cart displacement az(t) to be the output. You may assume negligible drag. MwSpring-Damper System M0 Problem 3 Repeat problem 2, but with the following differences: • Assume the mass of the handle m, is not equal to zero. You may...

  • Question8 n the spring-mass-damper system in Figure 8, the force F, is applied to the mass and it...

    Question8 n the spring-mass-damper system in Figure 8, the force F, is applied to the mass and its displacement is measured via r(t), whilst k and c are the spring and damper constants, respectively x(t) Figure 8: A spring-mass-damper system. a) Obtain the differential equation that relates the input force F, to the measured dis- (6 marks) placement x(t) for the system in Figure 8. b) Draw the block diagram representation of the system in Figure 8. c) Based on...

  • 3 dismo plesis The spring mass damper system shown is subjected to a force f(t), which...

    3 dismo plesis The spring mass damper system shown is subjected to a force f(t), which is a step function. b m f(t) At time t=0, with zero initial conditions, the system is subjected to the force. The magnitude of the force is 4 newton, while the spring rate is 8.2 newton/meter, and the damping coefficient is 10 newton-sec/meter. Calculate the energy stored in the spring, in Joules, in steady state.

  • API A spring-mass-damper system is shown in Figure API (a). The Bode diagram obtained by experimental...

    API A spring-mass-damper system is shown in Figure API (a). The Bode diagram obtained by experimental means using a sinusoidal forcing function is shown in Figure AP1(b). Determine the numerical values of m, b, and k -10 -20 5 -30 -40 -50 spring, k r(0) Mass, -90° Damper, b -180° 0.01 0.1 10 100 w (rad/s) FIGURE AP1 A spring-mass- damper system.

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mx+cx + kx = A sin(at) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor 5 and the un-damped natural frequency Using the given formulas for...

  • Problem 1. Consider the following mass, spring, and damper system. Let the force F be the...

    Problem 1. Consider the following mass, spring, and damper system. Let the force F be the input and the position x be the output. M-1 kg b- 10 N s/m k 20 N/nm F = 1 N when t>=0 PART UNIT FEEDBACK CONTROL SYSTEM 5) Construct a unit feedback control for the mass-spring-damper system 6) Draw the block diagram of the unit feedback control system 7) Find the Transfer Function of the closed-loop (CL) system 8) Find and plot the...

  • For the system shown below, a 20Kg mass is sitting on a spring-damper system on a foundation. The system is operating a...

    For the system shown below, a 20Kg mass is sitting on a spring-damper system on a foundation. The system is operating at a frequency of 20 rad/s with only one unbalanced mass, m. For the maximum transmissibility at (=0.2, use the chart provided below to determine the suitable values for the spring and the damper constants If a second mass is added to the system (m2=m) at an angle 90 degrees behind the first mass, What is the maximum force...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT