Question

A tennis ball is a hollow sphere with a thin wall. It is set rolling without slipping at 5.10 m/s on a horizontal section of
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sol. Initial speed, u = 5.1 m/s. Diameter of track = som vertical height, h = 0.12 . So final speed when it leaves the track

Add a comment
Know the answer?
Add Answer to:
A tennis ball is a hollow sphere with a thin wall. It is set rolling without...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A tennis ball is a hollow sphere with a thin wall It is set rolling without...

    A tennis ball is a hollow sphere with a thin wall It is set rolling without slipping at 4.12 m/s on a horizontal section of a track as shown in the figure below. It rolls around the inside of a vertical circular loop of radius r = 46.7 cm. As the ball nears the bottom o the oop, the shape o the track deviates rom a perfect circe so that the bal eaves the track at a point 80 cm...

  • Problem -2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without...

    Problem -2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without slipping on a level surface at a constant speed of 4.0 m/s. The ball rolls up a 40- ramp and eventually stops before rolling back down. (the moment of inertia of a hollow ball of mass M and radius RisMR2) Find: (a) the angular (rotational) speed of the ball (in rad/sec) just before it begins to move up the ramp: (b) the rotational kinetic...

  • Problem #2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without...

    Problem #2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without slipping on a level surface at a constant speed of 4.0 m/s. The ball rolls up a 40° ramp and eventually stops before rolling back down. (the moment of inertia of a hollow ball of mass M and radius R is MR2) Find: (a) the angular (rotational) speed of the ball (in rad/sec) just before it begins to move up the ramp; (b) the...

  • 2. Given the situation as shown in the figure. The hollow sphere is rolling down an...

    2. Given the situation as shown in the figure. The hollow sphere is rolling down an inclined plane! Mass of the sphere is M, radius is R and vertical height is H. V is the linear velocity of the center of mass, ICM is the moment of inertia and ω is the angular velocity. Write the conservation of energy for above system; make sure you use the symbols given (use initial as the top and final as before it hits...

  • A thin-walled hollow sphere with a mass 2.10 kg and a radius 15.5 cm rolls without...

    A thin-walled hollow sphere with a mass 2.10 kg and a radius 15.5 cm rolls without slipping down a slope angled at 39.0 ∘ . Part A Part complete Find the magnitude of the acceleration. ….m/s^2 Part B Part complete What is the magnitude of the friction force between the sphere and the slope? …..N

  • Constants A thin-walled, hollow spherical shell of mass m and radius r starts from rest and...

    Constants A thin-walled, hollow spherical shell of mass m and radius r starts from rest and rolls without slipping down the track shown in the figure (Figure 1). Points A and B are on a circular part of the track having radius R. The diameter of the shell is very small compared to ho and R, and the work done by the rolling friction is negligible Part A What is the minimum speed of the shell at point A for...

  • Problem 2 – variation of problem 10.76: A thin- walled, hollow spherical shell of mass m...

    Problem 2 – variation of problem 10.76: A thin- walled, hollow spherical shell of mass m and radius r starts from rest and rolls without slipping down the track shown in the figure. Points A and B are on a circular part of the track having radius R. The diameter of the shell is very small compared to ho and R, and the work done by rolling friction is negligible. a) What is the minimum height ho, for which this...

  • A hollow, thin-walled cylinder and a solid sphere start from rest and roll without slipping down...

    A hollow, thin-walled cylinder and a solid sphere start from rest and roll without slipping down an inclined plane of length 3.0 m. The cylinder arrives at the bottom of the plane 2.8 s after the sphere. Determine the angle between the inclined plane and the horizontal.

  • A solid uniform sphere rolls without slipping along a horizontal surface with translational speed v, comes...

    A solid uniform sphere rolls without slipping along a horizontal surface with translational speed v, comes to a ramp, and rolls without slipping up the ramp to height h, as shown. Assuming no losses to friction, heat, or air resistance, what is h in terms of v? The moment of inertia of a rolling solid sphere is Icm=2/5MR2. Assume acceleration due to gravity is g= 9.8 m/s2. A.7v^2/10g B.v^2/2g C.v^2/7g D.3v^2/10g

  • A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow...

    A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow cube at the bottom that is only 1/5 its mass. If the incline is h tall and the table has a height of D from the floor, at what horizontal distance from the table do the two objects land? The cube/sphere combination leaves the incline moving horizontally.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT