Question

A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200m from its equilibrium position......

Would you write out the intermediate steps, too, please?

A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring N/m Find the frequency of the oscillations Hz (c) Find the maximum speed of the object. m/s (d) Where does this maximum speed occur? (e) Find the maximum acceleration of the object. m/s2 (f) Where does the maximum acceleration occur? (9) Find the total energy of the oscillating system. Find the speed of the object when its position is equal to one-third of the maximum value. m/s (I) Find the magnitude of the acceleration of the object when its position is equal to one-third of the maximum value. m/s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

R-210-105 N 2. V- 1.7974 ger 2 自 . macm aeej

Add a comment
Know the answer?
Add Answer to:
A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 3.70 kg object is attached to a spring and placed on frictionless, horizontal surface. A...

    A 3.70 kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 19.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations (a) Find the force constant of the spring, N/m (b) Find the frequency of the oscillations Hz...

  • A 2 kg mass is attached to a spring and placed on a frictionless horizontal surface....

    A 2 kg mass is attached to a spring and placed on a frictionless horizontal surface. A horizontal force of 20N is required to hold the mass at rest when it is displaced a distance x = 0.2m from the equilibrium position. The mass is released and allowed to undergo simple harmonic motion. a) Find the force constant k of the spring. b) Find the maximum speed of the mass. c) Find the speed of the mass when x =...

  • A 4.50-kg object on a frictionless horizontal surface is attached to one end of a horizontal...

    A 4.50-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 840 N/m. The spring is stretched 7.00 cm from equilibrium and released. (a) What is the frequency of the motion? Hz (b) What is the period of the motion? s (c) What is the amplitude of the motion? cm (d) What is the maximum speed of the motion? m/s (e) What is the maximum acceleration of...

  • A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force...

    A 2.0 kg block on a horizontal frictionless surface is attached to a spring whose force constant is 300 N/m. The block is pulled from its equilibrium position at x = 0 m to a displacement x = + 0.090 m and released from rest t=0 The block then executes SHM along the x-axis horizontal. (a) What is the maximum acceleration and velocity?

  • A 205-g object is attached to a spring that has a force constant of 73.5 N/m....

    A 205-g object is attached to a spring that has a force constant of 73.5 N/m. The object is pulled 6.25 cm to the right of equilibrium and released from rest to slide on a horizontal, frictionless table. Calculate the maximum speed of the object Find locations of the object when its velocity is one-third of the maximum speed. Treat the equilibrium position as zero positions to the right as positive, and positions to the left as negative

  • a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose...

    a 4.5 kg block on a horizontal frictionless surface is attached to an ideal spring whose force constant (spring constant) is 450 N. The block is pulled from its equilibrium position at x=0.000 m to a position x=+0.080 m and is released from rest. The block then executes harmonic motion along the horizontal x-axis. The maximum kinetic energy of the system is closest to _____?

  • A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15...

    A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the cart is released from rest at position x = 8 cm from the equilibrium position. (a) What is the frequency of the oscillations of the object? (b) Determine the maximum speed of the cart. (c) Find the maximum acceleration of the mass (d) How much total energy does this oscillating...

  • A 185-g object is attached to a spring that has a force constant of 71.5 N/m....

    A 185-g object is attached to a spring that has a force constant of 71.5 N/m. The object is pulled 7.25 cm to the right of equilibrium and released from rest to slide on a horizontal, frictionless table. Calculate the maximum speed of the object. Find the locations of the object when its velocity is one-third of the maximum speed. Treat the equilibrium position as zero, positions to the right as positive, and positions to the left as negative. Note:...

  • A 185-g object is attached to a spring that has a force constant of 75.5 N/m....

    A 185-g object is attached to a spring that has a force constant of 75.5 N/m. The object is pulled 8.75 cm to the right of equilibrium and released from rest to slide on a horizontal, frictionless table. Calculate the maximum speed of the object. Number m/s Find the locations of the object when its velocity is one-third of the maximum speed. Treat the equilibrium position as zero, positions to the right as positive, and positions to the left as...

  • A17S g object is attached to a spring that has a force constant of785 NhnThe obiect...

    A17S g object is attached to a spring that has a force constant of785 NhnThe obiect is pulled 925 ㎝ to the right of equilibrium and released from rest to slide on a horizontal, frictionless table. Calculate the maximum speed of the object. maximum speed: m/s Find the locations of the object when its velocity is one-third of the maximum speed. Treat the equilibrium position as zero, positions to the right as positive, and positions to the left as negative....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT