Question

QUESTION 105 The two equilibrium constants for the same reaction, Kc and Kp. will always equal one another when: in the reaction equation, the number of moles of gaseous products equals the number of moles of gaseous reactants in the reaction equation, the number of moles of gaseous products is greater the number of moles of gaseous reactants all of the reactants and products are gases Oin the reaction equation, the total number of moles of reactants equals that of the products

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
QUESTION 105 The two equilibrium constants for the same reaction, Kc and Kp. will always equal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)?n where R=0.08206 L?atm/(K?mol), T is the absolute temperature, and ?n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)?2NH3(g) for which ?n=2?(1+3)=?2. Part A For the reaction 3A(g)+3B(g)?C(g) Kc...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+3B(g)⇌C(g) Kc =...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 80.2...

  • Q(22) Kp=Kc when? A) The reaction is at equilibrium B) The reaction is exothermic C) The reaction is endothermic D)...

    Q(22) Kp=Kc when? A) The reaction is at equilibrium B) The reaction is exothermic C) The reaction is endothermic D) all of the gasses present are at the same temperature E) the number of moles of gas on both sides of the balanced equation is the same. Q(23) HAH +A at the equilibrium (HA) = 1.65* 10-2 M and [H") = (A-) = 5.44*10-4 M at equilibrium. Kc = A) 1.7 X 10-1 C) 1.7 X 103 D) 1.7 X...

  • 1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. Part A For the reaction 3A(g)+2B(g)⇌C(g)...

  • , The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    , The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Part A Kp = K.(RT)An For the reaction 3A(g) + 2B(g) = C(g) where R=0.08206 L.atm/(K·mol), T is the absolute temperature, and An is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider...

  • Chapter 15 Homework Pressure-Based versus Concentration-Based Equilibrium Constants 11 of 41 Review I Constants I Periodic...

    Chapter 15 Homework Pressure-Based versus Concentration-Based Equilibrium Constants 11 of 41 Review I Constants I Periodic Table The equilibrium constant, K is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Part A For the reaction 3A(g)3B(g)C(g) Kp = Kc(RT)^n Ke 68.8 ta temperature of 273 C where R 0.08206 L atm/(K.mol), T is the absolute temperature, and...

  • Part A For the reaction The equilibrium constant, Kc is calculated using molar concentrations. For gaseous...

    Part A For the reaction The equilibrium constant, Kc is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp. is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation K = K (RT)An where R=0.08206 L-atın/K mol). T is the absolute temperature, and An is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N (g)...

  • Chapter 15 - Equilibrium Pressure-Based versus Concentration-Based Equilibrium Constants 22 of 58 Review Constants Periodic Table...

    Chapter 15 - Equilibrium Pressure-Based versus Concentration-Based Equilibrium Constants 22 of 58 Review Constants Periodic Table Part A For the reaction 2A(g) + 3B(g) = C(g) The equilibrium constant, ko is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from parlial pressures instead of concentrations. These two equilibrium constants are related by the equation K = K (RT) where R=0.08206 Latin/(K. Inol), T is the absolute temperature, and An is the change...

  • 1. Which statement about a balanced chemical reaction equation is always correct? The total number of...

    1. Which statement about a balanced chemical reaction equation is always correct? The total number of moles of the products equals the total number of moles of the reactants. b. The sum of the masses of gaseous reactants equals the sum of the masses of gaseous products. The sum of the stoichiometric coefficients for the products equals the sum of the stoichiometric coefficients for the reactants. The number of atoms of the products is higher to the numbers of atoms...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT