Question

Consider a discrete-time LTI system with impulse response sin((2n/3)n hln h[n] =

Sketch the magnitude of the frequency response H(e^{j\omega }) of the system. Provide enough details in your sketch to convey the pattern.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider a discrete-time LTI system with impulse response Sketch the magnitude of the frequency response of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The impulse response of a discrete-time (DT) LTI system is given as a. State whether or...

    The impulse response of a discrete-time (DT) LTI system is given as a. State whether or not the system is (i) memoryless, (ii) causal, (ii) stable. Justify your answers mathematically. b. Find an impulse response ho[n] such that the system with impulse response hln] + holn] (the parallel connection) is (i) a memoryless system, (ii) a causal system.

  • Consider an LTI discrete-time system that has impulse response h n Tn-12) 1 if otherwise a) Deter...

    Consider an LTI discrete-time system that has impulse response h n Tn-12) 1 if otherwise a) Determine the magnitude H(Q and the phase response LH(D for-r < Ω < π Enter Ω as "and enter the piecev se function Η Ω using the hea side function b)Determine the output of the system, rn, if the input is given by z n-Sn-9 +com( ) Enter your answer in terms of hin y[n] = In your answers, enter 2(n) for a discrete-time...

  • 2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) -...

    2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) - et u(t). (a) What is the frequency response H (w) of this system? (b) Find and sketch H(w). (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = S(t – 2). (This is a delay of 2.) (a) What is the frequency response H (w) of this...

  • Consider the cascade of LTI discrete-time systems shown in Figure P2.37. LTI System 1 hi[n], H...

    Consider the cascade of LTI discrete-time systems shown in Figure P2.37. LTI System 1 hi[n], H (el) LTI System 2 h2[n], H2(eje) Figure P2.37 The first system is described by the frequency response Hi(j =c-joo < 0.25% 11 0.25% < and the second system is described by <A hain) = 2 Sin(0.57) (a) Determine an equation that defines the frequency response, H(e)®), of the overall system over the range -- SUSA. (b) Sketch the magnitude. He"), and the phase, ZH(e)),...

  • 6) Consider a discrete-time LTI system with impulse response h[n] = response h[n] = ( 1)...

    6) Consider a discrete-time LTI system with impulse response h[n] = response h[n] = ( 1) u[n]. Use Fourie transforms to determine the response of this system to the input x[n] = ml + un).

  • 1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this system function. (f) Make a c...

    1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this system function. (f) Make a careful sketch of the frequency response magnitude, i.е., IH(ew), of this system for lwl S T. Label your sketch! 1. A discrete-time LTI system has the system function H(z) given below: H(2)1 2 (e) Determine the impulse response hin] associated with the stable system defined by this...

  • 2.7.5 The impulse response of a continuous-time LTI system is given by (a) What is the...

    2.7.5 The impulse response of a continuous-time LTI system is given by (a) What is the frequency response H (w) of this system? (b) Find and sketch |H(w) (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = δ(t-2) (This is a delay of 2.) (a) What is the frequency response H (w) of this system? (b) Find and sketch the frequency response...

  • Problem 3) Two discrete-time LTI systems are connected in cascade. The first system is defined by...

    Problem 3) Two discrete-time LTI systems are connected in cascade. The first system is defined by its frequency response: H(e-1+and the second system is (a) Determine the frequency response for the overall cascade system. Simplify your (c) Write down the difference equation that relates the output y[n] to the input x[n]. defined by its impulse response: hln]-n-n-+n-2]-n-3] answer as far as possible. (b) Determine and plot the impulse response h[n] for the overall cascade system.

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • BC:9.4 A LTI discrete time system has an impulse response h[n] = (−0.6)nu[n] + (0.95)nu[n −...

    BC:9.4 A LTI discrete time system has an impulse response h[n] = (−0.6)nu[n] + (0.95)nu[n − 1] Find the transfer function, Hˆ (e jωˆ ), in the normalized frequency domain. Use Matlab to plot the magnitude and phase (in degrees) of Hˆ (e jωˆ ) in the range of −π ≤ ωˆ ≤ π. Attach your Matlab source code with the plots. BC:9.4 A LTI discrete time system has an impulse response h[n] = (-0.6)"u[n] + (0.95)"u[n-1] Find the transfer...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT