Question

A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of...

A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of 5 MPa and 100 kPa. The temperature of the steam att the turbine is 500 C degree and the mass flow rate of steam through the cycle is 35 kg/s.

a) Determine the thermal efficiency of the cycle.

b) determine the net power output of the power plant ( Assume both the turbine and the pump have isentropic efficiency of 100%).

c) Draw the cycle on the T-S diagram.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

TC%) 9.2 10431.9 4173 2504 47.4 3475 264 I. 28c-10-le.os1 | 1148 |2593-111 st_-|27% 3 20 From steam tables 500c 3 2 ht = 343

Add a comment
Know the answer?
Add Answer to:
A steam power plant operates on an ideal reheat Rankine cycle between the pressure limits of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q1. A steam power plant operates on a simple ideal Rankine cycle between the pressure limits...

    Q1. A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 4 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 300°C, and the mass flow rate of steam through the cycle is 35 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine (a) the thermal efficiency of the cycle and (b) the net power output of the power plant. 02

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

  • A steam plant operates on a reheat Rankine cycle and has a net power output of...

    A steam plant operates on a reheat Rankine cycle and has a net power output of 80MW. Steam enters the high pressure turbine at 10 MPa and 500 °C and the low pressure turbine at 1 MPa and 500 °C. Steam leaves the condenser as a saturated liquid at a pressure of 10kPa. The efficiency of the turbine is 80% and the efficiency of the pump is 95%. Determine the thermal efficiency of the cycle. Rankine Cycle with Reheat

  • A steam power plant operates on an ideal Rankine cycle with two stages of reheat and...

    A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of 80 MW. Steam enters all three stages of the turbine at 600 oC. The maximum pressure in the cycle is 10 MPa, and the minimum pressure is 20 kPa. Steam is reheated at 4 MPa the first time and at 2 MPa the second time. Show the cycle on a T-s diagram with respect to saturation lines, an...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 74 percent and that of the pump is 95 percent. Determine the quality (or temperature, if superheated) of the...

  • A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of...

    A steam power plant operates on a simple ideal Rankine cycle between the pressure limits of 6 MPa and 50 kPa. The temperature of the steam at the turbine inlet is 450◦C, and the mass flow rate of steam through the cycle is 50 kg/s. (a) Find the temperature, pressure and specific volume at states 1, 2, 3, and 4. (b) Find the heat supplied, heat rejected, work consumed by the pump, work produced by the turbine, net power generation,...

  • a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure...

    a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure turbine (HPT) at a pressure of 10 MPa and temperature of 550°C. The steam expands through the HPT stage to a pressure of 0.6 MPa. Some of the steam at the end of the expansion process in HPT is extracted for a regeneration process in a closed-type feedwater heater. The steam leaves the heater as a saturated liquid and then is throttled to the...

  • A steam power plant operates on an ideal Rankine cycle with two stages of reheat and...

    A steam power plant operates on an ideal Rankine cycle with two stages of reheat and has a net power output of124.5 MW. Steam maximum pressure in the cycle is15 MPa, and the minimum pressure is 5 kPa. Steam is reheated at 5 MPa the first time and at 1 MPa the second time. Determine (a) the thermal efficiency of the cycle enters all three stages of the turbine at 500C. The 0/o and (b) the mass flow rate of...

  • Consider a power plant with water as working fluid that operates on a reheat Rankine cycle...

    Consider a power plant with water as working fluid that operates on a reheat Rankine cycle and has a net power output of 75 MW. Steam enters the high-pressure turbine at 10 MPa and 400°C and the low-pressure turbine at 1 MPa and 400°C. Water leaves the condenser as a saturated liquid at a pressure of 100 kPa. The isentropic efficiency of the high-pressure turbine is 85% and the low-pressure turbine in 100%. The pump has an isentropic efficiency of...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT