Question

Consider a power plant with water as working fluid that operates on a reheat Rankine cycle and has a net power output of 75 M

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Wnet = 75MW P = 10 MPa h = 3099.05 kilkg T, 400°c S = 6.2 158 Kilkgk 1 | from steam stable lo - impa . = Pz. Az = 3262.82 KJ1 T2 = 100Y. S₂ = Sy = 7.4634 KB) Kg k. At P = lоо кра. hurt = 417.31 - 417.31 sut = 1,3020 Lug - 2675.27. bug sug = 7.3589.has hs = Vet X (P. – Py). has his = 0.001043 * (lox 103 - 100) hos hs = 10.3257. KJ 1 kg (WP)ison = 10.3257 kJ 1 kg ne = 90%.lomra dywizo 25 lookpa b) = 415.583 RJ11g Already calculated WT2 = subill kilkg Wp = 11.473 kJ 1 kg c) Wines = 75x103 kW = inWhet h Qadd. cladd = (hi-ho) + (he-tho) - (30 99,05 429.78) + 3262-82- 2681.46 Q add = 3249.63 kJ 1 kg 1th = What a 950.22 Qa

Add a comment
Know the answer?
Add Answer to:
Consider a power plant with water as working fluid that operates on a reheat Rankine cycle...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a power plant with water as the working fluid that operates on a Rankine cycle....

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 74 percent and that of the pump is 95 percent. Determine the quality (or temperature, if superheated) of the...

  • Consider a steam power plant that operates on a reheat Rankine cycle and has a net...

    Consider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 550°C and the low-pressure turbine at 1 MPa and 550°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. The isentropic efficiency of the turbine is 80 percent, and that of the pump is 95 percent. Show the cycle on a T-s diagram with respect...

  • Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW

    Consider a power plant with water as the working fluid that operates on a Rankine cycle. It has a net power output of 40 MW. Superheated steam enters the turbine at 8 MPa and 600°C (h = 3642 kJ/kg; s = 7.0206 kJ/kg K) and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. The isentropic efficiency of the turbine is 85%. The pump has...

  • A steam plant operates on a reheat Rankine cycle and has a net power output of...

    A steam plant operates on a reheat Rankine cycle and has a net power output of 80MW. Steam enters the high pressure turbine at 10 MPa and 500 °C and the low pressure turbine at 1 MPa and 500 °C. Steam leaves the condenser as a saturated liquid at a pressure of 10kPa. The efficiency of the turbine is 80% and the efficiency of the pump is 95%. Determine the thermal efficiency of the cycle. Rankine Cycle with Reheat

  • Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam...

    Question 3 [30 marks] A reheat Rankine cycle is designed for a steam power plant. Steam enters both the high- and low- pressure turbines at 600oC. The maximum and minimum pressures of the cycle are 20 MPa and 20 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The...

  • A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at...

    A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at 12.5 MPa and 5508C at a rate of 7.7 kg/s and leaves at 2 MPa. Steam is then reheated at constant pressure to 400 C before it expands in the low-pressure turbine. Steam leaves the condenser as a saturated liquid. The exit of the turbine is saturated at the condenser pressure (a) the condenser pressure, (b) the net power output, and (c) the thermal...

  • Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam...

    Consider an ideal Rankine cycle with reheat based on water as the working fluid. The steam at the high-pressure turbine inlet is at 10 MPa and 700 K and it is saturated steam at the outlet The steam is reheated to 675 K before it enters the low pressure turbine. The pressure is reduced to where the steam is let down to 150 kPa The mass flow rate is 60 kg/s, 1. Draw the T-s diagram; [5 2. State all...

  • Steam power plant using the reheat Rankine cycle

    A steam power plant operates using the reheat Rankine cycle. Steam enters the high pressure turbine at 12.5 MPa and 550ºC at a rate of 7.7 kg/s and leaves at 2MPa. Steam is then reheated at a constant pressure to 450ºC before it expands in the low pressure turbine. The isentropic efficiencies of the turbine and the pumpare 85% and 90%, respectively. Steam leaves the condenser as a saturated liquid. If the moisture content of the steam at the exit...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 700°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 24 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT