Question

3. Water at 20 bar, 400°C enters a turbine operating at steady state and exits at...

Water at 20 bar, 400°C enters a turbine operating at steady state and exits at 1.5 bar. Stray heat transfer and kinetic and potential energy effects are negligible. A hard-to-read datasheet indicates that the quality at the turbine exit is 98%. Can this quality value be correct? If no, explain. If yes, determine the power developed by the turbine, in kJ per kg of water flowing

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

Add a comment
Answer #2

3-solution:

Given : water at inlet condition of turbine

P= 20 bar, T = 400°C

water at exit of turbine

P = 1.5 bar

quality of steam = •98

Since exit Temperture is not mentioned.

we can assume either water is in dry saturated or in wet steam at the exit of turbine

From steam table we can get following value of water :

At P = 20 bar , and Temperature 400°C ( water is at at superheated state)

enthalpy (h1)= 2945kj/kg , entropy (S1)= 7.127 KJ/kg-K

At P = 1.5 bar Temperature = 111.4 °C (assumed as it is not mentioned)

enthalpy (hf) = 467.1KJ/Kg , enthalpy at dry saturated (h2) = 2694KJ/Kg , entropy ( Sf)= 1.437Kj/kg-K , S2 = 7.223 KJ/Kg-K

let us assume that steam is expanded isentropically , so entropy at inlet condition will be ewual to entopy at the exit condition.

using relation: S1=Sf+x(S2-Sf) ( here x is the quality of steam)

7.127= 1.437+ x( 7.223-1.434)

On solving

x = 0.982 which is almost equal to 98% . Hence we can say that quality of steam estimated is correct.

Using steady flow energy eauation and ignoring kinetic aand potential effects negligible we have below relation

Change in enthalpy (inlet to exit) = work done / sec ( power) by the turbine

Now using relation : h*= hf+ x( h2- hf) for getting enthalpy at exit of turbine

h = 467.1+0.98*( 2694-467.1)

= 2649.462KJ/Kg

now power developed/ kg = h1- h*

= 3248- 2649.462

= 598.538KJ/Kg

Add a comment
Know the answer?
Add Answer to:
3. Water at 20 bar, 400°C enters a turbine operating at steady state and exits at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • ft Word - MENG X D MENG 0311.01.18 3. (20 points) Water at 20 bar, 400C...

    ft Word - MENG X D MENG 0311.01.18 3. (20 points) Water at 20 bar, 400C enters a turbine operating at steady state and exits at 1.5 bar. Stray heat transfer and kinetic and potential energy effects are negligible. A hard-to-read data sheet indicates that the quality at the turbine exit is 98%. Can this quality value be correct? If no, explain If yes, determine the power developed by the turbine, in kJ per kg of water flowing. shar 320°C...

  • Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands...

    Water vapor at 5 MPa, 320 C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 6.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat and kinetic and potential energy effects are negligible. Determine the power developed by the turbine in kW. ht 6/3 of En Help I S Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow...

  • Problem 6.055 SI Water at P1 = 20 bar, T1 = 400°C enters a turbine operating...

    Problem 6.055 SI Water at P1 = 20 bar, T1 = 400°C enters a turbine operating at steady state and exits at P2 = 1.5 bar, T2 = 230°C. The water mass flow rate is 4000 kg/hour. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power produced by the turbine, in kW, and the rate of entropy production in the turbine, in kW/K. Step 1 Determine the power produced by the turbine, in kW. W,...

  • Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady...

    Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a mass flow rate of 9.5 kg/s and exits at 0.1 bar and a quality of 92%. Stray heat transfer and kinetic and potential energy effects are negligible. (a) (30 points) Determine the rate of entropy production, Ocv, in kW/K. (b) (40 points) Determine the isentropic turbine efficiency, .

  • Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K,...

    Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1200 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Assuming k = 1.4, determine: (a) the temperature of the air at the turbine exit, in K. (b) the percent isentropic turbine efficiency.

  • Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and po...

    Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and potential energy effects can be ignored. Determine the followings. (a) (5 points) The rate of heat transfer, in kW. (b) (15 points) The rate of entropy production, in kW/K, for an enlarged control volume that includes the turbine and enough of...

  • Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state...

    Problem 4. Water vapor at 6 MPa, 600 °C enters a turbine operating at steady state and expands to 10 kPa. The mass flow rate is 2 kg/s, and the power developed is 2626 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine (a) the isentropic turbine efficiency and (b) the rate of entropy production within the turbine in kw/K.

  • Air enters an insulated turbine operating at steady state at 8.0bar, 687 °C and exits at...

    Air enters an insulated turbine operating at steady state at 8.0bar, 687 °C and exits at 1 bar, 327 °C. Neglecting kinetic and potential energy changes and assuming the ideal gas model, determine (a) the work developed, in kJ per kg of air flowing through the turbine. kJ/kg (b) whether the expansion is internally reversible, irreversible, or impossible. The expansion is impossible irreversible reversible the tolerance is +/-2%

  • An adiabatic turbine operates at steady state. Air enters the turbine at a pressure and temperature...

    An adiabatic turbine operates at steady state. Air enters the turbine at a pressure and temperature of 800 kPa and 1100 K, respectively, and exits at 100 kPa. A temperature sensor at the turbine exit indicates that the exit air temperature is 700 K. Kinetic and potential energy effects are negligible, and the air can be treated as an ideal gas. Determine if the exit temperature reading can be correct. If yes, determine the turbine isentropic efficiency.

  • Problem 6.066 Steam at 550 lbf/in.2, 700°F enters a turbine operating at steady state and exits...

    Problem 6.066 Steam at 550 lbf/in.2, 700°F enters a turbine operating at steady state and exits at 1 lbf/in. 2 The turbine produces 600 hp. For the turbine, heat transfer is negligible as are kinetic and potential energy effects. (a) Determine the quality of the steam at the turbine exit, the mass flow rate, in lb/s, and the entropy production rate, in Btu/s OR, if the turbine operates without internal irreversibilities. (b) Determine the mass flow rate, in lb/s, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT