Question

Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and po...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and...

    3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and 700 C. The mass flow rate of the steam is 200 kg'min. The steam exits the turbine as a saturated vapor at 3 bar. The turbine produces 3.0 MW of power. Ignore potential and kinetic energy effects. Assuming heat transfer from the turbine to the surroundings occurs at 20 C, determine: (a) (20 pts) The rate of heat transfer, in kW (b) (20 pts)...

  • 5. Steam at 140 bar and 600 °C enters a turbine at a mass flow rate...

    5. Steam at 140 bar and 600 °C enters a turbine at a mass flow rate of 0.5 kg/s. This steam exits the turbine as a saturated vapor at 300 °C. During operation, the turbine loses 200 kW of heat to the surroundings. Assume that the turbine operates at steady state and that the change of kinetic energy and gravitational energy can be ignored. (a) Sketch the system and boundary (4 points); (b) Label all mass flows and energy transfer...

  • thermo question 2. (20 points) Steam enters a turbine operating at steady state at 2 MPa,...

    thermo question 2. (20 points) Steam enters a turbine operating at steady state at 2 MPa, 360°C with a velocity of 100 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 50 m/s. The elevation of the inlet is 3 m higher than at the exit. The mass flow rate of the steam is 15 kg's, and the power developed is 7 MW. Let g -9.81 m/s Determine (a) the area at the inlet, in m, and (b)...

  • 761 Steam enters a turbine operating at steady state at 4 MPa, 500 C with a...

    761 Steam enters a turbine operating at steady state at 4 MPa, 500 C with a mass flow rate of 50 kg/s Saturated vapor exits at 10 kPa and the corresponding power developed is 42 MW The effects of motion and gravity negligible. are (a) For a control volume enclosing the turbine, determine the rale of heat Iransfer, in MW, from the turbine to its surrmundings Asuming 50°C. determine the rate of exergy destruction, in MW (b) If the turbine...

  • Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...

    Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...

  • Steam enters a turbine operating at steady state at 700oF and 450 lbf/in2 and leaves as...

    Steam enters a turbine operating at steady state at 700oF and 450 lbf/in2 and leaves as a saturated vapor at 0.8 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.

  • 1.Steams enters a turbine operating at steady state with a mass flow rate of 4600kg/h. The...

    1.Steams enters a turbine operating at steady state with a mass flow rate of 4600kg/h. The turbine develops a power output of 1000kW. At the inlet, the pressure is 60 bar, the temperature is 400° C, and the velocity is 10m/s. At the exit,the pressure is 0.1 bar, the quality is 0.90, and the velocity is 50m/s. Calculate the rate of heat transfer between the turbine and surroundings, in kW. Determine the entropy generation if the temperature of the surroundings...

  • Steam enters the first-stage turbine shown in Fig. P4.50 at 40 bar and 500℃

    Steam enters the first-stage turbine shown in Fig. P4.50 at 40 bar and 500℃ with a volumetric flow rate of 90 m3/min. Steam exits the turbine at 20 bar and 400℃. The steam is then reheated at constant pressure to 500℃ before entering the second-stage turbine. Steam leaves the second stage as saturated vapor at 0.6 bar. For operation at steady state, and ignoring stray heat transfer and kinetic and potential energy effects, determine the(a) mass flow rate of the...

  • A steam turbine, as shown in Figure Q3, operates at steady state with inlet conditions of Pi= 2 M...

    A steam turbine, as shown in Figure Q3, operates at steady state with inlet conditions of Pi= 2 MPa, T1 = 480°C and producing 4000 kW. Saturated steam leaves the turbine at a pressure of 0.1 bar where it is condensed at 45.81 °C in the condenser. There is no significant heat transfer between the turbine and the condenser and their surroundings, and kinetic and potential energy changes between inlet and exit are negligible. A steam turbine, as shown in...

  • Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady...

    Problem 3 (70 points) Water vapor at 10 MPa, 600°C enters a turbine operating at steady state with a mass flow rate of 9.5 kg/s and exits at 0.1 bar and a quality of 92%. Stray heat transfer and kinetic and potential energy effects are negligible. (a) (30 points) Determine the rate of entropy production, Ocv, in kW/K. (b) (40 points) Determine the isentropic turbine efficiency, .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT