Question
thermo question

2. (20 points) Steam enters a turbine operating at steady state at 2 MPa, 360°C with a velocity of 100 m/s. Saturated vapor e
0 0
Add a comment Improve this question Transcribed image text
Answer #1

tean O 2 MRa P,=2 mpa: T;=360°!, Fopom super heated steam stables @ ,4ti: 2,2 011411 m?/kg : h, 315913 kJ/kg; N= 100 m/s Pzzo

Add a comment
Know the answer?
Add Answer to:
thermo question 2. (20 points) Steam enters a turbine operating at steady state at 2 MPa,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steam enters a turbine operating at steady state at 2 MPa, 360 °C with a velocity...

    Steam enters a turbine operating at steady state at 2 MPa, 360 °C with a velocity of 52 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 35 m/s. The elevation of the inlet is 1 m higher than at the exit. The mass flow rate of the steam is 21 kg/s, and the power developed is 5 MW. Let g = 9.81 m/s2. Determine the area at the inlet, in m2.

  • 3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and...

    3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and 700 C. The mass flow rate of the steam is 200 kg'min. The steam exits the turbine as a saturated vapor at 3 bar. The turbine produces 3.0 MW of power. Ignore potential and kinetic energy effects. Assuming heat transfer from the turbine to the surroundings occurs at 20 C, determine: (a) (20 pts) The rate of heat transfer, in kW (b) (20 pts)...

  • Canvas Steam enters a turbine operating at steady state 2.2 MP-WC with a very 0.1 MPa...

    Canvas Steam enters a turbine operating at steady state 2.2 MP-WC with a very 0.1 MPa and a velocity of 50 m/s. The elevation of the inletisierte e 15 kg/s, and the power developed is 7 mW.648 = 9.84m2. Deastice (a) the area at the inlet, in ? (3 points) (b) the enthalpy at the inlet, in kJ/kg (1.5 points) (c) the enthalpy at the outlet, in kJ/kg (1.5 points) (d) the rate of heat transfer between the turbine and...

  • 761 Steam enters a turbine operating at steady state at 4 MPa, 500 C with a...

    761 Steam enters a turbine operating at steady state at 4 MPa, 500 C with a mass flow rate of 50 kg/s Saturated vapor exits at 10 kPa and the corresponding power developed is 42 MW The effects of motion and gravity negligible. are (a) For a control volume enclosing the turbine, determine the rale of heat Iransfer, in MW, from the turbine to its surrmundings Asuming 50°C. determine the rate of exergy destruction, in MW (b) If the turbine...

  • Steam enters a turbine operating at steady state at 700oF and 450 lbf/in2 and leaves as...

    Steam enters a turbine operating at steady state at 700oF and 450 lbf/in2 and leaves as a saturated vapor at 0.8 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.

  • Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and po...

    Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and potential energy effects can be ignored. Determine the followings. (a) (5 points) The rate of heat transfer, in kW. (b) (15 points) The rate of entropy production, in kW/K, for an enlarged control volume that includes the turbine and enough of...

  • A steam turbine, as shown in Figure Q3, operates at steady state with inlet conditions of Pi= 2 M...

    A steam turbine, as shown in Figure Q3, operates at steady state with inlet conditions of Pi= 2 MPa, T1 = 480°C and producing 4000 kW. Saturated steam leaves the turbine at a pressure of 0.1 bar where it is condensed at 45.81 °C in the condenser. There is no significant heat transfer between the turbine and the condenser and their surroundings, and kinetic and potential energy changes between inlet and exit are negligible. A steam turbine, as shown in...

  • A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/...

    A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/kg and a mass flow rate of 0.1 kg/s. At the exit, the specific enthalpy is 1,531 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW. B) Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.1 bar and a velocity of...

  • Thermo one Question 5 A steam turbine generates energy in the form of work at the rate of 346.1...

    Thermo one Question 5 A steam turbine generates energy in the form of work at the rate of 346.1 kJ/kg of steam. The steam at the inlet of the turbine is at 8 MPa, 480oC, and at a velocity of 163.5 m/s. The steam exits the turbine at 2 MPa, 240oC, and a velocity of 55.3 m/s. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 333.5oC. Determine the rate of entropy production (kJ/kg-K) within...

  • Problem 2 (30 pts) team enters a well-insulated turbine operating at steady state with a mass flo...

    Problem 2 (30 pts) team enters a well-insulated turbine operating at steady state with a mass flow rate inlet conditions of the steam are 80 bar, 480°C, and 75 m/s, and the exit conditions are quality, and 40 m/s. The elevation of the inlet is 5 m lower than at the exit. (a) (20 points) the power developed by the turbine, in kW (b) (10 points) the turbine inlet area in em2. Here, I m 100 cm of 5760 kghr....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT