Question

Problem #1 The 10 kg block A attains a velocity of 5 m/s in 1 second starting from rest. Determine the coefficient of kinetic

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A= o, 5014

Add a comment
Know the answer?
Add Answer to:
Problem #1 The 10 kg block A attains a velocity of 5 m/s in 1 second...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1- 8.2 kg is at rest on a plane that makes an...

    A block of mass m1- 8.2 kg is at rest on a plane that makes an angle of 9 30° above the horizontal. The coefficient of kinetic friction between the block and the plane is k-0.100. The block is attached to a second block of mass m2- 17.8 kg that hangs freely by a string that passes over a frictionless, massless pulley (see the Figure). Calculate the speed when the second block has fallen 9.7 m. (Your result must contain...

  • A block (block 5) of mass m5 = 2.3 kg hangs from the end of a...

    A block (block 5) of mass m5 = 2.3 kg hangs from the end of a (massless) string which runs over a (massless frictionless) pulley. The other end of the string is connected to another block (block 4) of mass m4 = 6.1 kg on a surface inclined at an angle of θ = 27o above the horizontal. The situation is shown below. a) Assuming there is no friction between block 4 and the inclined plane, find the acceleration (magnitude...

  • Problem 1: At a given instant the 10-lb block A is moving downward with a speed...

    Problem 1: At a given instant the 10-lb block A is moving downward with a speed of 6 ft s. Determine its speed 2 s later. Block B has a weight of 4 lb, and the coefficient of kinetic friction between it and the horizontal plane is 0.2. Neglect the mass of the cord and pulleys. B A

  • (Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2

    (Figure 1)Block 1. of mass m = 0.700 kg. is connected over an ideal (massless and frictionless) pulley to block 2 of mass m2, as shown For an angle of θ =30.0° and a coefficient of kinetic friction between block 2 and the plane of a = 0.350, an acceleration of magnitude α = 0 200 m/s2 is observed for block 2.

  • a block of mass 25 kg is given an initial velocity of 10 m/s down a...

    a block of mass 25 kg is given an initial velocity of 10 m/s down a 35 degree inclined plane and slides down the incline with an acceleration of 5m/s/s. a) what is the coefficient of kinetic friction between the block and the incline? b) what is the length of the incline if it takes 12 s for the block to reach its foor?

  • Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a...

    Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a force of magnitude 4 N that makes an angle of ф-30 with the horizontal surface. If the coefficient of kinetic friction between block and surface is 0.5, what is the resulting acceleration of the block along the surface Figure 1: Block on incline. 2. A block of mass m - 5 kg is subject to a force of magnitude 20 N that makes an...

  • Problem 1 (10 points) Block A, with weight 3w, slides down an inclined plane S of...

    Problem 1 (10 points) Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9 at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall as shown below. (a) Draw a free body diagram for block A. (b) Draw a free body diagram for plank B. (c) If the coefficient of kinetic friction is the same between A and B and...

  • rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined...

    rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined at 28.0 above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2-24.1 kg, as shown in the figure. The coefficient kinetic friction between block 1 and the inclined plane is μ,-0.15. If the blocks are released from rest, what is the acceleration of m2? what is a tension force T on the rope?

  • A block of mass m = 1.0 kg is placed at rest at a distance 8.15...

    A block of mass m = 1.0 kg is placed at rest at a distance 8.15 m (measured along the slope) from the horizontal plane on an incline whose surface makes θ=25o to the horizontal as shown in Figure 2. The coefficient of kinetic friction between the surface where the block is placed and the block is μk = 0.19. After the block starts descending on the slope, find the block’s speed at the time when it reaches the bottom...

  • Block 1, of mass m1 = 0.700 kg , is connected over an ideal (massless and...

    Block 1, of mass m1 = 0.700 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0 ∘ and a coefficient of kinetic friction between block 2 and the plane of μ = 0.300, an acceleration of magnitude a = 0.300 m/s2 is observed for block 2. Find mass of block 2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT