Question

3. Particle in a cylindrically symmetrical potential: Let pw. be the cylindrical coordinates of a spinless particle (z = pcos

particle in a cylindrically symmetric potential: do only C please

0 0
Add a comment Improve this question Transcribed image text
Answer #1


C lefs : mhY(x,y,z) Lz 4(z,y,z) say H Y( *>y, z) E P(2,y, 2) has oylindrical agminehry The System p(x,-y, 2) -> YCz,y, z) HY

Add a comment
Know the answer?
Add Answer to:
particle in a cylindrically symmetric potential: do only C please 3. Particle in a cylindrically symmetrical...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Particle in a cylindrically symmetrical potential Let p, o, z be the cylindrical coordinates of a...

    Particle in a cylindrically symmetrical potential Let p, o, z be the cylindrical coordinates of a spinless 1. (x = ? coso, y = ? sin ?, p 0, 0 <p < 2?). Assume that the potential en of this particle depends only on , and not on ? and z. Recall that: a. Write, in c ylindrical coordinates, the differential operator associated with the Hamiltonian. Show that H commutes with L, and P. Show fr the wave functions chosen...

  • Question 8 please 5. We start with Schrodinger's Equation in 2(x,t) = H¥(x,t). We can write...

    Question 8 please 5. We start with Schrodinger's Equation in 2(x,t) = H¥(x,t). We can write the time derivative as 2.4(x, t) = V(x,+) - (xt), where At is a sufficiently small increment of time. Plug the algebraic form of the derivative into Schrodinger's Eq. and solve for '(x,t+At). b. Put your answer in the form (x,t+At) = T '(x,t). c. What physically does the operator T do to the function '(x,t)? d. Deduce an expression for '(x,t+24t), in terms...

  • # Problem 1 # Suppose a point-mass particle with mass, 'm', moving in a gravitational potential,...

    # Problem 1 # Suppose a point-mass particle with mass, 'm', moving in a gravitational potential, 'U(r)', where 'r' is the distance from the center of the potential. A positional vector and momentum vector of a particle are vec r' and "vec p', respectively. (\vec means vector symbol.) Q1) An angular momentum vector vec J' is defined as vec J = \vec r x \vec p. Show that \vec J is conserved in such a gravitational potential U(r) which depends...

  • A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy ,...

    A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy , and ф are the usual spherical coordinates. (a) In the form given above, why is it clear that the potential energy function V) is (b) For this problem, it will be more convenient to express this spherically-symmetric where r , spherically symmetric? A brief answer is sufficient. potential energy in Cartesian coordinates x, y, and z as physically the same potential energy as the...

  • qm 2019.3 3. The Hamiltonian corresponding to the magnetic interaction of a spin 1/2 particle with...

    qm 2019.3 3. The Hamiltonian corresponding to the magnetic interaction of a spin 1/2 particle with charge e and mass m in a magnetic field B is À eB B. Ŝ, m where Ŝ are the spin angular momentum operators. You should make use of expres- sions for the spin operators that are given at the end of the question. (i) Write down the energy eigenvalue equation for this particle in a field directed along the y axis, i.e. B...

  • A system consists of two particles of mass mi and m2 interacting with an interaction potential...

    A system consists of two particles of mass mi and m2 interacting with an interaction potential V(r) that depends only on the relative distancer- Iri-r2l between the particles, where r- (ri,/i,21) and r2 22,ひ2,22 are the coordinates of the two particles in three dimensions (3D) (a) /3 pointsl Show that for such an interaction potential, the Hamiltonian of the system H- am▽ri _ 2m2 ▽22 + V(r) can be, put in the form 2M where ▽ and ▽ are the...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

  • In this optional assignment you will find the eigenfunctions and eigenenergies of the hydrogen atom using an operator method which involves using Supersymmetric Quantum Mechanics (SUSY QM). In t...

    In this optional assignment you will find the eigenfunctions and eigenenergies of the hydrogen atom using an operator method which involves using Supersymmetric Quantum Mechanics (SUSY QM). In the SUSY QM formalism, any smooth potential Vx) (or equivalently Vr)) can be rewritten in terms of a superpotential Wix)l (Based upon lecture notes for 8.05 Quantum Krishna Rajagopal at MIT Physics II as taught by Prof Recall that the Schroedinger radial equation for the radial wavefunction u(r)-r Rfr) can be rewritten...

  • Please answer number 8 l Verizon LTE 9:53 PM 100%,--+ Close Physical Chemistry ll Spring...1 DOCX-149...

    Please answer number 8 l Verizon LTE 9:53 PM 100%,--+ Close Physical Chemistry ll Spring...1 DOCX-149 KB (e) none of the above 7. A free particle is inside a one dimentional box from 0 to a/2, (a is a constant). If the particle is in the first excited states with eigenfunction, y Nsin (4px/a) (a) Determine the normalization constant. (b) Calculate the probability in between a/4 and a/2 8. What is the degree of the degeneracy if the three quantum...

  • 2. Goal of this problem is to study how tunnelling in a two-well system emerges. In particular, w...

    2. Goal of this problem is to study how tunnelling in a two-well system emerges. In particular, we are interested in determining how the tunnelling rate T' of a particle with mass m scales as a function of the (effective) height Vo - E and width b of an energy barrier separating the two wells. The following graphics illustrates the set-up. Initially the particle may be trapped on the left side corresponding to the state |L〉, we are now interested...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT