Question

Design a phase lead controller using the Root Locus Method for the system described by G(s)....

Design a phase lead controller using the Root Locus Method for the system described by G(s). Ensure that there is a reduction of MORE than 40% of the original settling time, additionally, enure that an overshoot of 12% is not exceeded.

G(s)=1/(s3+13s2+32s+20)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

matlab:

clc;

clear all;

close all;

s=tf('s');

g=1/(s^3+13*s^2+32*s+20);

rlocus(g)

File Edit View Insert Tools Desktop Window Help 08H3 Way. I E = 0 Root Locus System: g Gain: 34.6 Pole: -1.28 + 1.89 Damping:

Salt L {wn 128 fram from the Root locus to 1 615) = (s$+ 138+ 325 +40) 12% overshost point is Spa -1-28 + 195, The settling t- -- - ---- -..- _ 2 4.73 LESA = (Aso = 124 = 620 [PSA = 2asz = 767 - 38-35* In ole esp: Tan (62-38.35)= 4.73 » esa 10:8 BS i

Add a comment
Know the answer?
Add Answer to:
Design a phase lead controller using the Root Locus Method for the system described by G(s)....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Design Problems: (1) A robotic system is described by the transfer function P(s)=- 100 s(s +9.7)(s...

    Design Problems: (1) A robotic system is described by the transfer function P(s)=- 100 s(s +9.7)(s + 51.2) Use the root locus method to design a lead controller that achieves a closed-loop step response with P.0.5 2.5 %, and a settling time T, < 0.25s (using the 2% criterion). Also, the steady-state error to a unit ramp should be ess < 0.15. (2) This system is open-loop unstable: P(S) = 500 (5 - 1)(s + 10) Using the root locus...

  • Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s...

    Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s)- s(s+3(s6) Design a lag compensation to meet the following specifications The step response settling time is to be less than 5 sec. . The step response overshoot is to be less than 17% . The steady-state error to a unit ramp input must not exceed 10%. Dynamic specifications (overshoot and settling time) can be met using proportional feedback, but a lag compensator is needed...

  • b) Design a PID controller via root-locus to satisfy the following requirements for the controlled system...

    b) Design a PID controller via root-locus to satisfy the following requirements for the controlled system 2.9 T,-0.18 The following notation has been used for the system parameters: Percent Overshoot(%)-pos Settling time (s) Peak time (s)- Tp Start by manual calculations for the locations of the poles and zeros of the PID controller to satisfy the requirements. Find the required location of the zero for PD control and introduce PI control. Afterwards, use the Sisotool in MATLAB to simulate the...

  • 3. Lead Comensator Design Using Root-Locus Consider the system in Figure 1 for G(s) -1/s* Design ...

    3. Lead Comensator Design Using Root-Locus Consider the system in Figure 1 for G(s) -1/s* Design a lead compensator D(s)-K (s+ z)/(s+ p) to meet the specifications: tR 0.636 s , MP 5 % . We choose z1. Find K and jp Y(s) R(S) Figure 1. Unity Feedback System 3. Lead Comensator Design Using Root-Locus Consider the system in Figure 1 for G(s) -1/s* Design a lead compensator D(s)-K (s+ z)/(s+ p) to meet the specifications: tR 0.636 s ,...

  • Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness 200N/m Zero Damp...

    Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness 200N/m Zero Damper Input: force Output: mass displacement, y Design a PD controller, Kp+ Kd*s, for vibration reduction by root-locus method so that the damping ratio of the closed-loop systems is 0.5 and natural frequency is 3 rad/s Transfer Function of closed-loop system Draw root locus plot Design gains ww Design a PD controller for mass-spring systems by the Root-Locus Method Mass 2.6Kg Spring stiffness...

  • A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus...

    A system having an open loop transfer function of G(S) = K10/(S+2)(3+1) has a root locus plot as shown below. The location of the roots for a system gain of K= 0.248 is show on the plot. At this location the system has a damping factor of 0.708 and a settling time of 4/1.5 = 2.67 seconds. A lead compensator is to be used to improve the transient response. (Note that nothing is plotted on the graph except for that...

  • % We can couple the design of gain on the root locus with a % step-response...

    % We can couple the design of gain on the root locus with a % step-response simulation for the gain selected. We introduce the command % rlocus(G,K), which allows us to specify the range of gain, K, for plotting the root % locus. This command will help us smooth the usual root locus plot by equivalently % specifying more points via the argument, K. Notice that the first root locus % plotted without the argument K is not smooth. We...

  • Question 1 (60 points) Consider the following block diagram where G(s)- Controller R(s) G(s) (a) Sketch the root locus assuming a proportional controller is used. [25 points] (b) Design specifica...

    Question 1 (60 points) Consider the following block diagram where G(s)- Controller R(s) G(s) (a) Sketch the root locus assuming a proportional controller is used. [25 points] (b) Design specifications require a closed-loop pole at (-3+j1). Design a lead compensator to make sure the root locus goes through this point. For the design, pick the pole of the compensator at-23 and analytically find its zero. (Hint: Lead compensator transfer function will be Ge (s)$+23 First plot the poles and zeros...

  • 3. (28 pts.) The unity feedback system with K(5+3) G(s) = (s + 1)(s + 4)(s...

    3. (28 pts.) The unity feedback system with K(5+3) G(s) = (s + 1)(s + 4)(s + 10) is operating with 12% overshoot ({=0.56). (a) the root locus plot is below, find the settling time (b) find ko (c) using frequency response techniques, design a lead compensator that will yield a twofold improvement in K, and a twofold reduction in settling time while keeping the overshoot at 12%; the Bode plot is below using the margin command and using the...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT