Question

(80). The motion of a periodically driven pendulum (for small amplitudes) may be described by the second order IVP: + 24 + wą

0 0
Add a comment Improve this question Transcribed image text
Answer #1

We have Let us olu he eqn z282 + whore 2. Z Colution f is t HeaL part solution D Let colution D z = Ae : D bLcomes wt e e Nt

Add a comment
Know the answer?
Add Answer to:
(80). The motion of a periodically driven pendulum (for small amplitudes) may be described by the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A damped oscillator with natural frequency wo and damping K is driven by a period square...

    A damped oscillator with natural frequency wo and damping K is driven by a period square wave force with amplitude A such that F(t)= A Find the Fourier series for F(t), and solve for the amplitude of the motion of the oscillator. For which frequency wn is the resonance condition the most closely satisfied? Plot the maximum amplitude (in units of A) as a function of wn for the conditions with the spring constant k 1, m 2, K 0.1,...

  • 1.) In 1851, French physicist Léon Foucault introduced the Foucault pendulum to give direct evidence of...

    1.) In 1851, French physicist Léon Foucault introduced the Foucault pendulum to give direct evidence of Earth's rotation. Suppose that the one housed for a time at Fermi Lab in Batavia, It could swing for many hours before it damped out and had a length of 30 m. If the time for the amplitude of the swing to decay to of the initial amplitude was 8 hours, then a.) find the value of the damping constant b.) the period of...

  • Consider the potential energy described in problem 1.14. For low amplitudes, the motion of the object...

    Consider the potential energy described in problem 1.14. For low amplitudes, the motion of the object is well described by simple harmonic motion, so that the period is independent of amplitude. However, once the amplitude gets high enough this is no longer true. As the amplitude increase, does the period increase or decrease? Explain your reasoning thoroughly, and assume that the amplitude is always less than pi/B. (You do not need to answer question 1.14) 1.13 In research-level theel pnysles,...

  • Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two per...

    Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two periods for the case when Wn-2rad/s, 괴,-1mm, and eto =-v/5mm/s. 2. (introduction) The approximation sin θ ะ θ is reasonable for θ < 10°. If a pendulum of length 0.5m, has an initial position of 0()0, what is the maximum value of the initial angular velocity that can be given to the pendulum without violating this smll angle approximation? 3. (harmonic...

  • 3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following seco...

    3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following second order linear ODE: dx,2 dt n dt2 (0) C dt where is the damping ratio an wn is the natural frequency, both related to k, b, and m (the spring constant, damping coefficient, and mass, respectively) (a) Use the forward difference approximations of (b) Using Δt andd to obtain a finite difference formula for x(t+ 2Δ) (like we did in class for the...

  • ( 12 marks LO3) Consider an undan ed two-degree-of-freedom spring-mass system, shown in the f g re below. The motion of the system Es con pletely described by the coordinate 치(t) and x2(t). le H...

    ( 12 marks LO3) Consider an undan ed two-degree-of-freedom spring-mass system, shown in the f g re below. The motion of the system Es con pletely described by the coordinate 치(t) and x2(t). le Ho Assume: kI- k2 k3 2 Nm, m-m2-1 kg and F-F2- Use the provided white paper to work out your answers, then pick the proper choice from the drop down list The equation of motion of mass 1 is EQ 1-x+6x1-4x2 0 EO 2 x1+4x1-2x2 The...

  • please answer all prelab questions, 1-4. This is the prelab manual, just in case you need...

    please answer all prelab questions, 1-4. This is the prelab manual, just in case you need background information to answer the questions. The prelab questions are in the 3rd photo. this where we put in the answers, just to give you an idea. Lab Manual Lab 9: Simple Harmonic Oscillation Before the lab, read the theory in Sections 1-3 and answer questions on Pre-lab Submit your Pre-lab at the beginning of the lab. During the lab, read Section 4 and...

  • #5 is only I need in which we need to plot it on Matlab and I...

    #5 is only I need in which we need to plot it on Matlab and I don't know how to plot it. Project 1 A Vibration Insulation Problem Passive isolation systems are sometimes used to insulate delicate equipment from unwanted vibrations. For example, in order to insulate electrical monitoring equipment from vibrations present in the floor of an industrial plant, the equipment may be placed on a platform supported by flexible mountings resting on the floor. A simple physical model...

  • Consider a Sinusoidally Driven LC Electrical Circuit, which Contains an Electric Potential Oscill...

    Consider a Sinusoidally Driven LC Electrical Circuit, which Contains an Electric Potential Oscillator, E E, cos(or), an Inductor, L, and a Capacitor, C. Note that an Oscillating Charge,g).Forms on the Capacitor Plates, as well as an Oscillating Current, I(). throughout the Circuit, which is Associated with the Driven Frequency, ω , as Shown. 1. 1(6) gt) E(r) Recall that the Electric Potential Over an Inductor is Given by E , and the dl dr Electric Potential Over a Capacitor is...

  • please give me answers to all the questions and i would really appreciate that thank you...

    please give me answers to all the questions and i would really appreciate that thank you 6. -0 points My Notes O Ask Your Teache A 10.1 kg object oscillates at the end of a vertical spring that has a spring constant of 2.20 x 104 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N-s/m (a) Calculate the frequency of the dampened oscillation. H2 (b) By what percentage does the amplitude of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT