Question

6. (3 points) An automobile tire has a mass of 12 kg and radius of gyration Ko = 0.4m. If it is released from rest at A on th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

5m. 1o.um. Given, Mass (M) = 12 kg Radius of gyration (K = 0.4m Assuming friction is absent then we Can conserve the energy w

Add a comment
Know the answer?
Add Answer to:
6. (3 points) An automobile tire has a mass of 12 kg and radius of gyration...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A tire (solid disk) has a mass of 10 kg and a radius of 0.25 m....

    A tire (solid disk) has a mass of 10 kg and a radius of 0.25 m. The tire rests at the top of an incline. When released, the tire rolls without slipping down to the bottom of the incline. The top of the incline is 10 m in height above the bottom of the incline. a) What is the angular velocity of the tire at the bottom of the incline? b) What would the angular velocity at the bottom of...

  • Problem Assignment No. 9 Review Problem 19.3 The tire has a mass of 9 kg and...

    Problem Assignment No. 9 Review Problem 19.3 The tire has a mass of 9 kg and a radius of gyration ko 235 mm. It is released from rest and rolls down the plane without slipping. (Figure 1) Part A Determine the speed of its center O when t 1.5 s Express your answer to three significant figures and include the appropriate units. Value Units Submit Request Answer Provide Feedback Figure 1 of 1 l mm 30

  • . The 40-kg wheel has a radius of gyration about its center of gravity G of...

    . The 40-kg wheel has a radius of gyration about its center of gravity G of k_G = 250 mm. If it rolls without slipping, determine its angular velocity when it has rotated clockwise 90 degree from the position shown. The spring AB has a stiffness k = 100 N/m and an unstretched length of 500 mm. The wheel is released from rest.

  • The wheel consists of a 2.6-kg rim of 420-mm radius with hub and spokes of negligible mass. The w...

    The wheel consists of a 2.6-kg rim of 420-mm radius with hub and spokes of negligible mass. The wheel is mounted on the 3.7-kg yoke OA with mass center at G and with a radius of gyration about O of 495 mm. If the assembly is released from rest in the horizontal position shown and if the wheel rolls on the circular surface without slipping, compute the velocity of point A when it reaches A'. Answer: vA = m/s 420...

  • The wheel consists of a 2.5-kg rim of radius r = 215 mm with hub and...

    The wheel consists of a 2.5-kg rim of radius r = 215 mm with hub and spokes of negligible mass. The wheel is mounted on the 3.0-kg yoke OA with mass center at G and with a radius of gyration about 0 of 350 mm. If the assembly is released from rest in the horizontal position shown and if the wheel rolls on the circular surface without slipping, compute the velocity of point A when it reaches A'. Assume d...

  • PROBLEM 4 The 30-Kg pendulum has its mass center at G and a radius of gyration about point G of -...

    PROBLEM 4 The 30-Kg pendulum has its mass center at G and a radius of gyration about point G of - ,#300 mm . It is initially at rest in the horizontal position(6-0") , where the attached <M spring is unstretched. After applying a constant moment ofM " 10 N.m . determine angular 300 N 2nlositz ω" ? at the instant (-90° ) . Note that: -m ko,, where m is the mass or the pendulum PROBLEM 4 The 30-Kg...

  • 7090 2. A circular rigid body of mass m and radius of gyration k is released...

    7090 2. A circular rigid body of mass m and radius of gyration k is released from stationary in an incline plane of incline angle θ and coefficient of friction μ Determine the normal reaction force, friction force, linear and angular accelerations when it is in (1) pure rolling motion. (2) rolling with slipping motion. (3) Compare a cylinder (radius of gyration k 1/ 2) and a hoop (k- 1) of the same mass, which one travels faster along the...

  • A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane.

    A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane. The hoop rolls down the incline dropping a vertical distance of 3.0 m. Assume that the hoop rolls without slipping. (a) Determine the total kinetic energy at the bottom of the incline. (b) How fast is the hoop moving at the bottom of the incline?

  • A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down...

    A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down a 35° incline that is 7.9 m long. Assume it started from rest. The moment of inertia of a sphere is given by I = 2/5MR2. (a) Calculate the linear speed of the sphere when it reaches the bottom of the incline. (b) Determine the angular speed of the sphere at the bottom of the incline.

  • Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2...

    Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2 kg is placed at the top of an incline of height h-2 m. The surface of the incline makes an angle θ-30° with the horizontal. The hoop is released from rest and rolls without slipping. m MR2 for hoopl a) What is the acceleration of its center of mass (açom) during rolling? b) What is the force of friction in unit vector notation required...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT