Question

7090 2. A circular rigid body of mass m and radius of gyration k is released from stationary in an incline plane of incline angle θ and coefficient of friction μ Determine the normal reaction force, friction force, linear and angular accelerations when it is in (1) pure rolling motion. (2) rolling with slipping motion. (3) Compare a cylinder (radius of gyration k 1/ 2) and a hoop (k- 1) of the same mass, which one travels faster along the incline plane? Indicate what kind of motion condition (pure rolling or rolling with slipping) you use
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sol Radius of 9yiation K Radius Y friction coefficie吋ー从 For Pu sliy me tren motion. C 63 from dDa②), we get,

Add a comment
Know the answer?
Add Answer to:
7090 2. A circular rigid body of mass m and radius of gyration k is released...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2...

    Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2 kg is placed at the top of an incline of height h-2 m. The surface of the incline makes an angle θ-30° with the horizontal. The hoop is released from rest and rolls without slipping. m MR2 for hoopl a) What is the acceleration of its center of mass (açom) during rolling? b) What is the force of friction in unit vector notation required...

  • Consider a uniform disk of mass m, and radius R that is rolling with slipping. The surface has a ...

    ANS: PLEASE USE LAGRANGIAN, THANK YOU, WILL UPVOTE GOOD ANSWER IMMEDIATELY Consider a uniform disk of mass m, and radius R that is rolling with slipping. The surface has a coefficient of kinetic friction a) Find the equations of motion. b) Next consider the same disk when it is rolling without slipping. Find the EOM using either x or θ. Hint: be careful with the generalized force for θ. If we label point P as the point on the disk...

  • . 1209%] This is a rigid body kinetic problem. You must solve this problem using the...

    . 1209%] This is a rigid body kinetic problem. You must solve this problem using the Newton's law in the speciied coordinate system. Consider a uniform ball of mass m and radius r rolling down a stationary s1. semi-circular surface of radius R > r. The ball is released from rest at an angle θ= θ。> O. Assume static friction coefficient μ Answer the following questions. (a) 8/20] Let the angle of rotation of the ball be φ and the...

  • A circular hoop of mass 'm' and radius 'R' attached to a spring of spring constant...

    A circular hoop of mass 'm' and radius 'R' attached to a spring of spring constant 'k' at the centre of the hoop using a massless bar attached to the hoop,rolls without slipping on a horizontal surface. If the hoop is performing a periodic motion with a cyclic frequency ω, the value of ω is

  • A circular hoop of mass m, radius r, and infinitesimal thickness rolls without slipping down a ramp inclined at an angle θ with the horizontal. (Intro 1figure)

    A circular hoop of mass m, radius r, and infinitesimal thickness rolls without slipping down a ramp inclined at an angle θ with the horizontal. (Intro 1figure)part a)What is the acceleration of the center of the hoop?Express the acceleration in terms of physical constants and all or some of the quantities m,r,and θ.part b)What is the minimum coefficient of (static)friction  needed for the hoop to roll without slipping? Note that it is static and not kinetic friction that is relevant here,...

  • Q10 A hollow sphere and a hoop of the same mass and radius are released at...

    Q10 A hollow sphere and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. If both are uniform, (1) Which one reaches the bottom of the incline first if there is no slipping? (2) A uniform hollow sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping dow an inclined plane of vertical height 5.3 m. What is the translational speed of...

  • 1 Consider a cylinder of mass M and radius a rolling down a half-cylinder of radius R as shown in...

    question (c), (d), (e), (f) please. Thanks. 1 Consider a cylinder of mass M and radius a rolling down a half-cylinder of radius R as shown in the diagram (a) Construct two equations for the constraints: i rolling without slipping (using the two angles and θ), and ii) staying in contact (using a, R and the distance between the axes of the cylinders r). (b) Construct the Lagrangian of the system in terms of θ1, θ2 and r and two...

  • A hoop loop -ring) with a mass of 2 kg, radius of 60 cm is released...

    A hoop loop -ring) with a mass of 2 kg, radius of 60 cm is released from 3m height on an incline plane. It rolls down fired its speed at bottom of plane white friction coefficient is 0.8? incline angle is 30°

  • A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane.

    A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane. The hoop rolls down the incline dropping a vertical distance of 3.0 m. Assume that the hoop rolls without slipping. (a) Determine the total kinetic energy at the bottom of the incline. (b) How fast is the hoop moving at the bottom of the incline?

  • 2. Rolling down the hill (a) A solid cylinder of mass 1.0 kg and radius 10...

    2. Rolling down the hill (a) A solid cylinder of mass 1.0 kg and radius 10 cm starts from rest and rolls without slipping down a 1.0 m-high inclined plane. What is the speed of the cylinder when it reaches the bottom of the inclined plane? (b) How about a solid sphere of the same mass and radius? (c) How about a hoop of the same mass and radius? (d) Which of the above objects is moving fastest when it...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT