Question

Problem 3: A certain pipe has resonant frequencies of 234 Hz, 390 Hz, and 546 Hz, with no other resonant frequencies between

0 0
Add a comment Improve this question Transcribed image text
Answer #1

w frequency of pipe closed at one end is given by f = (2nte) u Next frequency of bibe as fg ? (216+1) 7s) fg = (2n+370 fy_f=so difference between adjacent has monics is same for both pibes. O speed of sound = 343 mis 2L 320Hz-234 H2 34zm1s N56 zu ~

Add a comment
Know the answer?
Add Answer to:
Problem 3: A certain pipe has resonant frequencies of 234 Hz, 390 Hz, and 546 Hz,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A certain pipe has resonant frequencies of 165 Hz, 275 Hz, and 385 Hz, with no...

    A certain pipe has resonant frequencies of 165 Hz, 275 Hz, and 385 Hz, with no other resonant frequencies between these values. (a) Is this a pipe open at both ends or closed at one end? (b) What is the fundamental frequency of this pipe? (c) How long is this pipe? (Use the speed of sound in air at 20°C.)

  • SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s...

    SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s Substitute into whole harmonics equation, with n = 1. 11-222(2.46 m) = 69.7 Hz Multiply to find the second and third harmonics. 12 - 27 - 139 Hz 13 = 3f7 - 209 Hz (B) How many harmonics lle between 20 Hz and 20000 Hz for this pipe? 343 m/s Set the frequency in the harmonics equation equal to 2.00 x 104 Hz and...

  • explain please *Question 160: Resonant Frequencies A piece of pipe is closed at one end and...

    explain please *Question 160: Resonant Frequencies A piece of pipe is closed at one end and open at the other. The standing wave with the lowest frequency (the fundamental) occurs at frequency 100 Hz. What is the frequency of the first overtone (the next highest standing wave frequency)? Select one: a. 200 Hz b. 150 Hz c. No other standing waves are possible in a pipe open at one end only d. 67 Hz e. 300 Hz The correct answer...

  • An engineer measures the frequencies of the audible standing waves in an organ pipe. He finds...

    An engineer measures the frequencies of the audible standing waves in an organ pipe. He finds two adjacent tones at 420 and 540 Hz. (a) On the basis of this discovery, the engineer computes the pipe's fundamental frequency. What is its value (in Hz)? Hz (b) Is the pipe open at both ends or only one? open at both ends open at only one end (c) The air within the pipe has a temperature of 20°C and is at atmospheric...

  • 2B.5 An organ pipe open at both ends has a fundamental frequency of 440 Hz (concert...

    2B.5 An organ pipe open at both ends has a fundamental frequency of 440 Hz (concert A). What is the length of this pipe? What are the frequencies of its first three harmonics? 02B.6 An aroan nina

  • (a) What length of pipe open at both ends has a fundamental frequency of 3.75 102...

    (a) What length of pipe open at both ends has a fundamental frequency of 3.75 102 Hz? Find the first overtone. lpipe = .457 Incorrect: m fovertone = 750 Correct: Hz (b) If the one end of this pipe is now closed, what is the new fundamental frequency? Find the first overtone. ffundamental = 750 Incorrect: Hz fovertone = 615 Incorrect: Hz (c) If the pipe is open at one end only, how many harmonics are possible in the normal...

  • Calculate the length of a pipe that has a fundamental frequency of 316 Hz. (Take the...

    Calculate the length of a pipe that has a fundamental frequency of 316 Hz. (Take the speed of sound in air to be 343 m/s.) Calculate the length of a pipe that has a fundamental frequency of 316 Hz. (Take the speed of sound in air to be 343 m/s.) (a) Assume the pipe is closed at one end (b) Assume the pipe is open at both ends

  • A certain organ pipe, open at both ends, produces a fundamental frequency of 290 Hz in...

    A certain organ pipe, open at both ends, produces a fundamental frequency of 290 Hz in air. If the pipe is filled with helium at the same temperature, what fundamental frequency f_He will it produce? Take the molar mass of air to be 28.8 g/mol and the molar mass of helium to be 4.00 g/mol Express your answer in hertz. Now consider a pipe that is stopped (i.e., closed at one end) but still has a fundamental frequency of 290...

  • Calculate the length of a pipe that has a fundamental frequency of 997 Hz. (Take the...

    Calculate the length of a pipe that has a fundamental frequency of 997 Hz. (Take the speed of sound in air to be 343 m/s.) (a) Assume the pipe is closed at one end. m (b) Assume the pipe is open at both ends. m

  • The fundamental frequency of a pipe that is open at both ends is 563 Hz ....

    The fundamental frequency of a pipe that is open at both ends is 563 Hz . part a: How long is this pipe? Use v = 344 m/s. L = …….. m pat b: If one end is now closed, find the wavelength of the new fundamental. (lambda) = …… m part c: If one end is now closed, find the frequency of the new fundamental. f = ……. Hz

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT